- A network is a communication system that provides correct, efficient, and robust data exchange between 2 or more hosts
- Local area network (LAN) -connects nodes in a small geographic area (e.g., single building, single campus)
- Must be fast with low error rate
- Media - twisted-pair, coaxial cable, fiber optic cable

Wide area network (WAN) —connects nodes in a wide geographic area (e.g., across the country)

- May be slower with higher error rate
- Media - leased telephone lines (T1 \& T3 service), microwave links, satellite channels


## Network Topologies



star

partially connected

ring

tree

doubly linked ring


- Slow = low data rate
- Modems, etc. (into home, out of home)
- Modem = 56 Kbps / 33.6 Kbps
- ISDN = 128 Kbps / 128 Kbps
- ADSL (asymmetric digital subscriber line) $=1.5-9 \mathrm{Mbps} / 0.640-2 \mathrm{Mbps}$
- Cable modems = 1.5-30 / 0.3-10 Mbps
- Time Warner's RoadRunner in Akron is $27 \mathrm{Mbps} / 3 \mathrm{Mbps}$
- Dedicated lines
- T1 = 1.5 Mbps
- T3 = 45 Mbps (backbone, some sites)
- New optical backbone: 155 Mbps , soon 600 Mbps , eventually more
- Fast = high data rate
- Ethernet $=10 \mathrm{Mbps}$ (originally 3 Mbps )
- Fast Ethernet $=100 \mathrm{Mbps}$
- Gigabit Ethernet $=1000 \mathrm{Mbps}=1 \mathrm{Gbps}$


## Network Topologies (cont.)

■ Point-to-point - links to specific nodes

- Fully connected - each node connects to all other nodes
$\checkmark$ Each message is fast; it takes only a single "hop" to reach its destination
$\checkmark$ Failure of any one node does not affect communication except to it
$\boldsymbol{X}$ Expensive!
- Partially connected - each node connects to some, but not all, nodes
$\checkmark$ Less expensive
$\boldsymbol{X}$ A message may have to go though several other nodes
$\boldsymbol{X}$ Less tolerant to failure
- Tree - network hierarchy
$\checkmark$ Messages between direct descendants are fast
$\boldsymbol{X}$ Messages between "cousins" must go up to a common ancestor and back down
$\boldsymbol{X}$ Not tolerant of failures

Network Topologies (cont.)

- Star- all nodes connect to a single centralized node
- Central node is generally dedicated to network traffic
$\checkmark$ Inexpensive
$\checkmark$ Each message takes only two hops
$X$ Failure of central node disconnects entire network

Ring - all nodes connect in a circle

- One directional ring - each node can send in only one direction
$\checkmark$ Inexpensive
$\boldsymbol{X}$ Message may need to take $n$ hops
$\boldsymbol{X}$ Not tolerant of failures
- Bi-directional ring - each node can send in either direction
$\checkmark$ Inexpensive
$\checkmark$ Tolerates a single failure
- Message may need at most $n / 2$ hops

Network Topologies (cont.)

- Ring - all nodes connect in a circle
- Doubly linked ring - each node connects to 1-node and 2-node-away neighbors
$\checkmark$ Message may need at most $n / 4$ hops
$\checkmark$ Tolerates multiple failures
$\boldsymbol{X}$ Expensive
■ Bus - all nodes connect to common network
- Nodes connect directly to each other over a shared common bus using multiaccess bus technology
$\checkmark$ Inexpensive, linear in number of nodes
$\checkmark$ Tolerant of node failures
$\boldsymbol{X}$ Only one node can send data at a time


## Putting it All Together...

In practice, we often use some combination of these structures:


[^0]
## Network Communication



■ Connection-oriented communication

- Information delivered as a stream of bytes, in correct order
- Connect, exchange data, release
- Connectionless communication
- Information delivered as a set of packets
- Packets may be delivered out of sequence, must be reassembled


## Switching Technologies

- In a broadcast (or multiaccess) network, all hosts directly connect to a single shared communication medium
- Each host check the destination address on every message to decide whether or not to read that message
- In a switched network, there is a partially-connected topology, and there may be multiple paths between two hosts
- Messages may have to pass through intermediate nodes to reach destination
- Circuit switching - a dedicated communication path is reserved, and then used to send the entire message
- Connection occupies a fixed capacity (not necessarily entire capacity) of each link for the entire lifetime of the connection
- Connection-oriented communication


## Switching Technologies(cont.)

- Packet switching - data is broken up into a sequence of fixed-size packets
- Each packet is passed through the network from source to destination along some (possibly different) route (path)
- At each node, the entire packet is received, stored briefly, and then forwarded to the next node
- Datagram package switching
- Packets are called datagrams
- Each packet is routed independently
- A sequence of packets can be received out of order
- Connectionless communication
- Virtual circuit package (message) switching
- All packets from one packet stream are sent along the same path (= virtual circuit)
- Guarantees packets are received in sequence
- Connection-oriented communication


## Asynchronous Transfer Mode (ATM)

Designed for wide variety of data, including multimedia (voice, video)

ATM is a fast packet-switching network

- Connected communication
- Establishes a connection (virtual circuit) for all packets to use
- Uses cell relay to achieve higher speed
- No flow control or error checking at intermediate nodes
- Transmits small, fixed-length packets called cells
- Guaranteed bandwidth - connects only if sufficient resources are available


## Main protocol layers

- ATM adaptation layer - packet assembly
- ATM layer - connection-oriented transmission of packets called cells


## Routing

- Routing software decides which path to use to move a message from the destination to source
- Routing is usually hop-by-hop, meaning each host chooses the next host to send the message to
- Static (fixed) routing - routing tables are stored, and change very infrequently (e.g., after major the network changes)
$\checkmark$ Low setup cost, packets arrive in order
$\mathbf{X}$ Can't react to changes in network load
- Dynamic routing - routing tables are updated frequently
$\checkmark$ Can react to changes in network load
X Higher setup cost for each packet
X Packets can arrive out of order


[^0]:    Diagram from Distributed Systems, Coulouris et. al., Addison-Wesley, 1994

