
1 Spring 2000, Lecture 13

Mutual Exclusion
in a Distributed Environment

n Mutual exclusion

● Centralized algorithms
n Central physical clock

n Central coordinator

● Distributed algorithms
n Time-based event ordering

– Lamport’s algorithm (logical clocks)
– Ricart & Agrawala’s algorithm (" ")

– Suzuki & Kasimi’s algorithm (broadcast)

n Token passing
– Le Lann’s token-ring algorithm (logical ring)
– Raymond’s tree algorithm (logical tree)

n Sharing K identical resources
– Raymond’s extension to Ricart &

Agrawala’s time-based algorithm

● Atomic transactions (later in course)

n Related — self-stabilizing algorithms,
election, agreement, deadlock

2 Spring 2000, Lecture 13

Mutual Exclusion in a Distributed
Environment — General Requirements

n N processes share a single resource, and
require mutually-exclusive access

n Conditions to satisfy:

● A process holding the resource must
release it before it can be granted to
another process

● Requests for the resource must be
granted in the order in which they’re made

● If every process granted the resource
eventually releases it, then every request
will be eventually granted

n Assumptions made:

● Messages between two processes are
received in the order they are sent

● Every message is eventually received

● Each process can send a message to any
other process

3 Spring 2000, Lecture 13

Central Physical Clock

n Provide a single central physical clock,
just like in a centralized system

● Processes request physical timestamps
from this clock and use them to order
events

✔ Advantages:

● Simplicity

8Disadvantages:

● Clock must always be available to provide
the requested timestamps

● Transmission errors can prevent the
proper ordering from taking place

● An accurate estimation of transmission
delays is required

● The degree of accuracy may not be as
high as desired

4 Spring 2000, Lecture 13

Central Coordinator

n To enter the critical section, a thread
sends a request message to the central
coordinator, and waits for a reply

n When the coordinator receives a request:

● If no other thread is in the critical section,
it sends back a reply message

● If another thread is in the critical section,
the coordinator adds the request to the
tail of its queue, and does not respond

n When the requesting thread receives the
reply message from the coordinator, it
enters the critical section

● When it leaves the critical section, it
sends a release message to coordinator

● When the coordinator receives a release
message, it removes the request from the
head of the queue, and sends a reply
message to that thread

5 Spring 2000, Lecture 13

Central Coordinator
(cont.)

n Evaluation:

● 3 messages required to enter CS
n release, request, reply

✘ Coordinator is a performance bottleneck

✘ Coordinator is a single point of failure

✘ Delay is unconstrained

1 2 3

request queue in CS

Coordinator

request

1

reply

1 2 3

request queue in CS

Coordinator

request

1

1 2 3

request queue in CS

Coordinator

2

release

1 2 3

request queue in CS

Coordinator

2

reply

2

6 Spring 2000, Lecture 13

Lamport’s Algorithm (1978)

n Each process maintains a request
queue, ordered by timestamp value

n Requesting the critical section (CS):

● When a thread wants to enter the CS, it:
n Adds the request to its own request queue

n Sends a timestamped request message
to all threads in that CS’s request set

● When a thread receives a request
message, it:
n Adds the request to its own request queue

n Returns a timestamped reply message

n Executing the CS:

● A thread enters the CS when both:
n Its own request is at the top of its own

request queue (its request is earliest)

n It has received a reply message with a
timestamp larger than its request from all
other threads in the request set

7 Spring 2000, Lecture 13

Lamport’s Algorithm (cont.)

n Releasing the CS:

● When a thread leaves the CS, it:
n Removes its own (satisfied) request from

the top of its own request queue

n Sends a timestamped release message
to all threads in the request set

● When a thread receives a release
message, it:
n Removes the (satisfied) request from its

own request queue
n (Perhaps raising its own message to the

top of the queue, enabling it to finally enter
the CS)

n Evaluation:

● 3(N–1) messages required to enter CS
n (N–1) release, (N–1) request, (N–1) reply

✘ Later…

8 Spring 2000, Lecture 13

Lamport’s Algorithm (cont.)

n Both threads 0 and 2 request the CS:

n Everyone replies, thread 0 enters the CS
since its request was first:

0

1

2

request
8 8

request
request

12

request
12

0

2

0

1

2
reply
14

16
reply

reply
13

reply
17

0

02

2

02

9 Spring 2000, Lecture 13

Lamport’s Algorithm (cont.)

n Thread 0 releases the CS, thread 2
enters it:

0

1

2

release
20 20

release

2

2

2

10 Spring 2000, Lecture 13

Ricart and Agrawala’s Algorithm
(1981)

n Requesting the critical section (CS):

● When a thread wants to enter the CS, it:
n Sends a timestamped request message to

all threads in that CS’s request set

● When a thread receives a request
message:
n If it is neither requesting nor executing the

CS, it returns a reply message

n If it is requesting the CS, but the
timestamp on the incoming request is
smaller than the timestamp on its own
request, it returns a reply message

– Means the other thread requested first

n Otherwise, it defers answering the request

n Executing the CS:

● A thread enters the CS when:
n It has received a reply message from all

other threads in the request set

11 Spring 2000, Lecture 13

Ricart and Agrawala’s Algorithm
(cont.)

n Releasing the CS:

● When a thread leaves the CS, it:
n Sends a reply message to all the deferred

requests

n (Thread with next earliest request will now
received its last reply message and enter
the CS)

n Evaluation:

● 2(N–1) messages required to enter CS
n (N–1) reply, (N–1) request

n Evaluation (Lamport, Ricart & Agawala):

✘ Distributed performance bottleneck

✘ Now N points of failure
n If a thread crashes, it fails to reply, which

is interpreted as a denial of permission to
enter the CS, so everyone waits…

✘ Need up-to-date group communication

12 Spring 2000, Lecture 13

Ricart and Agrawala’s Algorithm
(cont.)

n Both threads 0 and 2 request the CS:

n Threads 1 and 2 reply, thread 0 defers
and enters the CS since its request was
first:

n After leaving the CS, thread 0 replies to
thread 2, which enters the CS

0

1

2

request
8 8

request
request

12

request
12

0

1

2
reply
14

reply
13

reply
17

13 Spring 2000, Lecture 13

Raymond’s Extension For Sharing K
Identical Resources (1987)

n K identical resources, which must be
shared among N processes

n Raymond’s extension to Ricart and
Agrawala’s algorithm:

● A process can enter the CS as soon as it
has received N–K reply messages

● Algorithm is generally the same as R&A,
with one difference:
n R&A — reply messages arrive only when

process is waiting to enter CS

n Raymond —
– N–K reply messages arrive when process

is waiting to enter CS

– Remaining K–1 reply messages can
arrive when process is in the CS, after it
leaves the CS, or when it’s waiting to enter
the CS again

– Must keep a count of number of
outstanding reply messages, and not
count those toward next set of replies

