
1 Spring 2000, Lecture 14

Mutual Exclusion
in a Distributed Environment (Review)

n Mutual exclusion

● Centralized algorithms
n Central physical clock

n Central coordinator

● Distributed algorithms
n Time-based event ordering

– Lamport’s algorithm (logical clocks)
– Ricart & Agrawala’s algorithm (" ")

– Suzuki & Kasimi’s algorithm (broadcast)

n Token passing
– Le Lann’s token-ring algorithm (logical ring)
– Raymond’s tree algorithm (logical tree)

n Sharing K identical resources
– Raymond’s extension to Ricart &

Agrawala’s time-based algorithm

● Atomic transactions (later in course)

n Related — self-stabilizing algorithms,
election, agreement, deadlock

2 Spring 2000, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (1985)

n Overview:

● If a thread wants to enter the critical
section, and it does not have the token, it
broadcasts a request message to all
other sites in the token’s request set

● The thread that has the token will then
send it to the requesting thread
n However, if it’s in the critical section, it

gets to finish before sending the token

● A thread holding the token can
continuously enter the critical section until
the token is requested

● Request vector at thread i :
n RNi [k] contains the largest sequence

number received from thread k in a
request message

● Token consists of vector and a queue:
n LN[k] contains the sequence number of

the latest executed request from thread k
n Q is the queue of requesting thread

3 Spring 2000, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

n Requesting the critical section (CS):

● When a thread i wants to enter the CS, if
it does not have the token, it:
n Increments its sequence number sn and

its request vector RNi [i] to RNi [i]+1

n Sends a request message containing new
sn to all threads in that CS’s request set

● When a thread k receives the request
message, it:
n Sets RNk [i] to MAX(RNk [i], sn received)

– If sn < RNk [i], the message is outdated

n If thread k has the token and is not in the
CS (i.e., is not using it),
and if RNk [i] == LN[i]+1 (indicating an

outstanding request)
it sends the token to thread i

n Executing the CS:

● A thread enters the CS when it has
acquired the token

4 Spring 2000, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

n Releasing the CS:

● When a thread i leaves the CS, it:
n Sets LN[i] of the token equal to RNi [i]

– Indicates that its request RNi [i] has been
executed

n For every thread k whose ID is not in the
token queue Q, it appends its ID to Q if
RNi [k] == LN[k]+1

– Indicates that thread k has an outstanding
request

n If the token queue Q is nonempty after this
update, it deletes the thread ID at the
head of Q and sends the token to that
thread

– Gives priority to others’ requests
– Otherwise, it keeps the token

n Evaluation:

● 0 to N messages required to enter CS
n No messages if thread holds the token
n Otherwise N–1 requests, 1 reply

5 Spring 2000, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2

0 0 0LN

Q

Token

0 0 0RN

0 0 0RN

0 0 0RN

0

1

2

0 0 0LN

Q

Token

1 0 0RN

1 0 0RN

1 0 0RN
SN

SN

SN

Thread 0 updates its SN
and request vector RN, and
sends its new SN to others

Threads 1 and 2 update
their RNs with new SN
received from Thread 0.
Thread 1 has the token,
but is not currently using it,
so it sends it to Thread 0.

SN

SN

SN

Thread 0 decides it wants
to get into the CS

6 Spring 2000, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2
1 1 1RN

1 1 1RN

1 1 1RN
SN

SN

SN

0 0 0LN

Q

Token

Thread 0 doesn't do
anything with those
requests yet, but it
updates its SN.

Thread 0 now has the token,
and is actively using it, when
requests come in from Thread
1, then Thread 2.

0

1

2
1 1 1RN

1 1 1RN

1 1 1RN
SN

SN

SN

1 0 0LN

Q

Token

Then it adds Threads
1 and 2 to the token
queue Q. Finally, it deletes
Thread 1 from the head of
Q and sends it the token.

When Thread 0 leaves CS, it
updates LN to indicate that
the request has been satisfied.

12

7 Spring 2000, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2
1 1 1RN

1 1 1RN

1 1 1RN
SN

SN

SN

1 0 0LN

Q

Token

2

Thread 1 now has the token,
and can enter the CS.
When it finishes, it will update
LN and send the token to
Thread 2 (after adding
any new requests to the end of
the token queue Q).

8 Spring 2000, Lecture 14

Token-Ring Algorithm
(Le Lann, 1977 ?)

n Processes are arranged in a logical ring

n At start, process 0 is given a token

● Token circulates around the ring in a fixed
direction via point-to-point messages

● When a process acquires the token, it
has the right to enter the critical section
n After exiting CS, it passes the token on

n Evaluation:

● N–1 messages required to enter CS

● Not difficult to add new processes to ring

● With unidirectional ring, mutual exclusion
is fair, and no process starves

✘ Not very fault-tolerant

✘ Difficult to detect when token is lost

✘ Doesn’t guarantee “happened-before”
order of entry into critical section

9 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(1989)

n Overview:

● Threads are arranged as a logical tree
n Edges are directed toward the thread that

holds the token (called the “holder”, initially
the root of tree)

● Each thread has:
n A variable holder that points to its neighbor

on the directed path toward the holder of
the token

n A FIFO queue called request_q that holds
its requests for the token, as well as any
requests from neighbors that have
requested but haven’t received the token

– If request_q is non-empty, that implies the
node has already sent the request at the
head of its queue toward the holder

T1

T5T4 T7T6

T3T2

10 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(cont.)

n Requesting the critical section (CS):

● When a thread wants to enter the CS, but
it does not have the token, it:
n Adds its request to its request_q
n If its request_q was empty before the

addition, it sends a request message
along the directed path toward the holder

– If the request_q was not empty, it’s
already made a request, and has to wait

● When a thread in the path between the
requesting thread and the holder receives
the request message, it
n < same as above >

● When the holder receives a request
message, it
n Sends the token (in a message) toward

the requesting thread
n Sets its holder variable to point toward that

thread (toward the new holder)

11 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(cont.)

n Requesting the CS (cont.):

● When a thread in the path between the
holder and the requesting thread receives
the token, it
n Deletes the top entry (the most current

requesting thread) from its request_q
n Sends the token toward the thread

referenced by the deleted entry, and sets
its holder variable to point toward that
thread

n If its request_q is not empty after this
deletion, it sends a request message
along the directed path toward the new
holder (pointed to by the updated holder
variable)

n Executing the CS:

● A thread can enter the CS when it
receives the token and its own entry is at
the top of its request_q
n It deletes the top entry from the request_q,

and enters the CS
12 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(cont.)

n Releasing the CS:

● When a thread leaves the CS
n If its request_q is not empty (meaning a

thread has requested the token from it), it:
– Deletes the top entry from its request_q
– Sends the token toward the thread

referenced by the deleted entry, and sets
its holder variable to point toward that
thread

n If its request_q is not empty after this
deletion (meaning more than one thread
has requested the token from it), it sends
a request message along the directed
path toward the new holder (pointed to by
the updated holder variable)

n Evaluation:

✔ On average, O(log N) messages required
to enter CS
n Average distance between any two nodes

in a tree with N nodes is O(log N)

13 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(cont.)

T1

T5T4 T7T6

T3T2

4
req4

T1

T5T4 T7T6

T3T2

4

tok4
4

T1

T5T4 T7T6

T3T2

4

req4
4

T1

T5T4 T7T6

T3T2

4
tok4

T1

T5T4 T7T6

T3T2

enters CS

14 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(cont.)

T1

T5T4 T7T6

T3T2

4
req4

T1

T5T4 T7T6

T3T2

4

tok4
45

5

T1

T5T4 T7T6

T3T2

4

req4
4

T1

T5T4 T7T6

T3T2

4
tok4

req5

5

5

T1

T5T4 T7T6

T3T2

enters CS

5

5

5

T1

T5T4 T7T6

T3T2

4

4

5req5

15 Spring 2000, Lecture 14

Election Algorithms

n In a distributed system, many algorithms
require a permanent or temporary leader:

● Distributed mutual exclusion:
n Central coordinator algorithm requires a

coordinator

n Token-ring algorithm, Suzuki-Kasami’s
broadcast algorithm, and Raymond’s tree
algorithm require an initial token holder

● Distributed deadlock detection —
maintainer of a global wait-for graph

n If leader fails, must elect a new leader

● Election algorithms assume there is a
unique priority number for each thread

● Goal: elect the highest-priority thread as
the leader, tell all active threads

● Second goal: allow a recovered leader to
re-establish control (or at least, to identify
the current leader)

16 Spring 2000, Lecture 14

Garcia-Molina’s Bully Algorithm
(1993)

n 3 types of messages:

● Election —announce an election

● Answer — acknowledge election msg.

● Coordinator — announce new coordinator

n The election:

● A thread begins an election when it
notices the coordinator has failed
n To do so, it sends election messages to all

threads with a higher priority

● It then awaits an answer message (from a
live thread with a higher priority)
n If none arrives within a certain time, it

declares itself the coordinator, and sends
a coordinator message to all threads with
a lower priority

n If an answer message does arrive, it waits
a certain time for a coordinator message
to arrive from the new coordinator

– If none arrives, it begins another election

17 Spring 2000, Lecture 14

Garcia-Molina’s Bully Algorithm
(cont.)

n Result of the election:

● If a thread receives a coordinator
message, it accepts the new coordinator

n Participating in an election:

● If a thread receives an election message:
n It sends back an answer message
n It begins another election (with its higher-

ups) unless it has already begun one

n Failed threads:

● When one restarts, it begins an election
n Unless it knows it has the highest priority,

in which case it just sends out coordinator
messages to re-establish control

n Evaluation:

● N–2 messages in best case

● O(N2) messages in worst case
18 Spring 2000, Lecture 14

Garcia-Molina’s Bully Algorithm
(cont.)

1 2

4 3

C

electionelection

1 2

4 3

C

answer

election

1 2

4 3

C

coordinator
coordinator

1 2

4 3

C

election

election election

1 2

4 3

C

1 2

4 3

C

coordinator
coordinator

coor-
dinator

