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Mutual Exclusion
in a Distributed Environment (Review)

n Mutual exclusion

● Centralized algorithms
n Central physical clock

n Central coordinator

● Distributed algorithms
n Time-based event ordering

– Lamport’s algorithm               (logical clocks)
– Ricart & Agrawala’s algorithm      (  "      "    )

– Suzuki & Kasimi’s algorithm       (broadcast)

n Token passing
– Le Lann’s token-ring algorithm (logical ring)
– Raymond’s tree algorithm        (logical tree)

n Sharing K identical resources
– Raymond’s extension to Ricart &

Agrawala’s time-based algorithm

● Atomic transactions          (later in course)

n Related — self-stabilizing algorithms,
election, agreement, deadlock
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Suzuki and Kasami’s Broadcast
Algorithm (1985)

n Overview:

● If a thread wants to enter the critical
section, and it does not have the token, it
broadcasts a request message to all
other sites in the token’s request set

● The thread that has the token will then
send it to the requesting thread
n However, if it’s in the critical section, it

gets to finish before sending the token

● A thread holding the token can
continuously enter the critical section until
the token is requested

● Request vector at thread i :
n RNi [k] contains the largest sequence

number received from thread k in a
request message

● Token consists of vector and a queue:
n LN[k] contains the sequence number of

the latest executed request from thread k
n Q is the queue of requesting thread
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Suzuki and Kasami’s Broadcast
Algorithm (cont.)

n Requesting the critical section (CS):

● When a thread i wants to enter the CS, if
it does not have the token, it:
n Increments its sequence number sn and

its request vector RNi [i] to RNi [i]+1

n Sends a request message containing new
sn to all threads in that CS’s request set

● When a thread k receives the request
message, it:
n Sets RNk [i] to MAX(RNk [i], sn received)

– If sn < RNk [i], the message is outdated

n If thread k has the token and is not in the
CS (i.e., is not using it),
and if RNk [i] == LN[i]+1 (indicating an 

outstanding request)
it sends the token to thread i

n Executing the CS:

● A thread enters the CS when it has
acquired the token
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Suzuki and Kasami’s Broadcast
Algorithm (cont.)

n Releasing the CS:

● When a thread i leaves the CS, it:
n Sets LN[i] of the token equal to RNi [i]

– Indicates that its request RNi [i] has been
executed

n For every thread k whose ID is not in the
token queue Q, it appends its ID to Q if
RNi [k] == LN[k]+1

– Indicates that thread k  has an outstanding
request

n If the token queue Q is nonempty after this
update, it deletes the thread ID at the
head of Q and sends the token to that
thread

– Gives priority to others’ requests
– Otherwise, it keeps the token

n Evaluation:

● 0 to N messages required to enter CS
n No messages if thread holds the token
n Otherwise N–1 requests, 1 reply
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Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2

0 0 0LN

Q

Token

0 0 0RN

0 0 0RN

0 0 0RN

0

1

2

0 0 0LN

Q

Token

1 0 0RN

1 0 0RN

1 0 0RN
SN

SN

SN

Thread 0 updates its SN
and request vector RN, and
sends its new SN to others

Threads 1 and 2 update
their RNs with new SN
received from Thread 0.
Thread 1 has the token,
but is not currently using it,
so it sends it to Thread 0.

SN

SN

SN

Thread 0 decides it wants
to get into the CS
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Suzuki and Kasami’s Broadcast
Algorithm (cont.)
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anything with those
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Then it adds Threads
1 and 2 to the token
queue Q.  Finally, it deletes
Thread 1 from the head of
Q and sends it the token.

When Thread 0 leaves CS, it
updates LN to indicate that
the request has been satisfied.
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Suzuki and Kasami’s Broadcast
Algorithm (cont.)
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Thread 1 now has the token,
and can enter the CS.
When it finishes, it will update
LN and send the token to
Thread 2 (after adding
any new requests to the end of
the token queue Q).
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Token-Ring Algorithm
(Le Lann, 1977 ?)

n Processes are arranged in a logical ring

n At start, process 0 is given a token

● Token circulates around the ring in a fixed
direction via point-to-point messages

● When a process acquires the token, it
has the right to enter the critical section
n After exiting CS, it passes the token on

n Evaluation:

● N–1 messages required to enter CS

● Not difficult to add new processes to ring

● With unidirectional ring, mutual exclusion
is fair, and no process starves

✘ Not very fault-tolerant

✘ Difficult to detect when token is lost

✘ Doesn’t guarantee “happened-before”
order of entry into critical section
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Raymond’s Tree Algorithm
(1989)

n Overview:

● Threads are arranged as a logical  tree
n Edges are directed toward the thread that

holds the token (called the “holder”, initially
the root of tree)

● Each thread has:
n A variable holder that points to its neighbor

on the directed path toward the holder of
the token

n A FIFO queue called request_q  that holds
its requests for the token, as well as any
requests from neighbors that have
requested but haven’t received the token

– If request_q  is non-empty, that implies the
node has already sent the request at the
head of its queue toward the holder
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Raymond’s Tree Algorithm
(cont.)

n Requesting the critical section (CS):

● When a thread wants to enter the CS, but
it does not have the token, it:
n Adds its request to its request_q
n If its request_q was empty before the

addition, it sends a request message
along the directed path toward the holder

– If the request_q  was not empty, it’s
already made a request, and has to wait

● When a thread in the path between the
requesting thread and the holder receives
the request message, it
n < same as above >

● When the holder receives a request
message, it
n Sends the token (in a message) toward

the requesting thread
n Sets its holder variable to point toward that

thread (toward the new holder)
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Raymond’s Tree Algorithm
(cont.)

n Requesting the CS (cont.):

● When a thread in the path between the
holder and the requesting thread receives
the token, it
n Deletes the top entry (the most current

requesting thread) from its request_q
n Sends the token toward the thread

referenced by the deleted entry, and sets
its holder variable to point toward that
thread

n If its request_q is not empty after this
deletion, it sends a request message
along the directed path toward the new
holder (pointed to by the updated holder
variable)

n Executing the CS:

● A thread can enter the CS when it
receives the token and  its own entry is at
the top of its request_q
n It deletes the top entry from the request_q,

and enters the CS
12 Spring 2000, Lecture 14

Raymond’s Tree Algorithm
(cont.)

n Releasing the CS:

● When a thread leaves the CS
n If its request_q  is not empty (meaning a

thread has requested the token from it), it:
– Deletes the top entry from its request_q
– Sends the token toward the thread

referenced by the deleted entry, and sets
its holder  variable to point toward that
thread

n If its request_q is not empty after this
deletion (meaning more than one thread
has requested the token from it), it sends
a request message along the directed
path toward the new holder (pointed to by
the updated holder variable)

n Evaluation:

✔ On average, O(log N) messages required
to enter CS
n Average distance between any two nodes

in a tree with N nodes is O(log N)
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Raymond’s Tree Algorithm
(cont.)
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Raymond’s Tree Algorithm
(cont.)
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Election Algorithms

n In a distributed system, many algorithms
require a permanent or temporary leader:

● Distributed mutual exclusion:
n Central coordinator algorithm requires a

coordinator

n Token-ring algorithm, Suzuki-Kasami’s
broadcast algorithm, and Raymond’s tree
algorithm require an initial token holder

● Distributed deadlock detection —
maintainer of a global wait-for graph

n If leader fails, must elect a new leader

● Election algorithms assume there is a
unique priority number for each thread

● Goal:  elect the highest-priority thread as
the leader, tell all active threads

● Second goal:  allow a recovered leader to
re-establish control (or at least, to identify
the current leader)
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Garcia-Molina’s Bully Algorithm
(1993)

n 3 types of messages:

● Election —announce an election

● Answer — acknowledge election msg.

● Coordinator — announce new coordinator

n The election:

● A thread begins an election when it
notices the coordinator has failed
n To do so, it sends election messages to all

threads with a higher priority

● It then awaits an answer message (from a
live thread with a higher priority)
n If none arrives within a certain time, it

declares itself the coordinator, and sends
a coordinator message to all threads with
a lower priority

n If an answer message does arrive, it waits
a certain time for a coordinator message
to arrive from the new coordinator

– If none arrives, it begins another election
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Garcia-Molina’s Bully Algorithm
(cont.)

n Result of the election:

● If a thread receives a coordinator
message, it accepts the new coordinator

n Participating in an election:

● If a thread receives an election message:
n It sends back an answer message
n It begins another election (with its higher-

ups) unless it has already begun one

n Failed threads:

● When one restarts, it begins an election
n Unless it knows it has the highest priority,

in which case it just sends out coordinator
messages to re-establish control

n Evaluation:

● N–2 messages in best case

● O(N2) messages in worst case
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Garcia-Molina’s Bully Algorithm
(cont.)
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