Chang and Roberts’ Ring Algorithm
(1979)

m Threads are arranged in a logical ring

o Every thread is initially a non-participant

m The election:

¢ A thread begins an election by
m Marking itself as a participant

m Sending an election message (containing
its identifier) to its neighbor

¢ When a thread receives an election
message, it compares the identifier that
arrived in the message to its own:
m If the arrived identifier is greater, then it:
— If itis not a participant, it:
» Marks itself as a participant
— Forwards the message to its neighbor
m If the arrived identifier is smaller:
— If itis not a participant, it:
» Marks itself as a participant

» Substitutes its own identifier in the
election message and sends it on

— Ifitis already a patrticipant, it does nothing

Spring 2000, Lecture 15

Chang and Roberts’ Ring Algorithm
(cont.)

m The election:

e When a thread receives an election
message, it compares...:

m If the arrived identifier is that of the
receiving thread, then its identifier is the
largest, so it becomes the coordinator

— It marks itself as a non-participant again,

— It sends an elected message to its
neighbor, announcing the results of the
election and its identity

e When a thread receives an elected
message, it
m Marks itself as a non-participant, and
m Forwards the message to its neighbor

m Evaluation:

¢ 3N-1 messages in worst case
m N-1 election messages to reach
immediate neighbor in wrong direction, N
election messages to elect it, then N
elected messages to announce result

Spring 2000, Lecture 15

Chang and Roberts’ Ring Algorithm

(cont.)
Nonparticipant ~ Nonparticipant Participant Participant
@ @m’
electionl election4
@ C election4 Ci
Participant Nonparticipant Participant Participant
Participant Participant Nonparticipant Nonparticipant
@ o elected4 e
election4 elected4 elected4
@ elected
Participant Participant Nonparticipant Nonparticipant

Spring 2000, Lecture 15

Agreement

m In a distributed system, it is often
necessary for a set of processors to
reach mutual agreement (consensus)

e Mutual exclusion — agree who has the
right to enter the critical section

¢ Maintain replicated data, monitor a
distributed computation, detect failed
processors, etc.

e This is one of the most fundamental
problems in distributed system design

m In normal situations, this isn’t a problem
e Exchange values, take average, etc.

e However, this is difficult if the system
contains failures (also called faults)

m Faulty processors can send erroneous
values to other processors

m Faulty network links can prevent values
from reaching other processors

Spring 2000, Lecture 15

Adversaries

m One way to think about agreement is to
imagine an all-powerful adversary

e Adversary is a demon with complete
control over the system who will try to
make your algorithm fail

e Adversary knows global system state (but
you can not!) and can arbitrarily
interleave process execution, event
execution, message delivery, etc.

¢ Adversary can make processors and links
fail at arbitrary times, even intermittently

m You must design an agreement algorithm
that always works

e Can't say “but that’s highly unlikely!”,
because that's what the adversary will do

Spring 2000, Lecture 15

System Model

m There are N processors in the system
trying to reach agreement

e A subset M of those N processors are
faulty, and others are non-faulty

e Each processor Pi has a value Vi

m To reach agreement, each processor
calculates an agreement value Ai

e Every N—M non-faulty processor
computes the same agreement value Ai

e This Ai does not depend on the value Vi
of any of the faulty processors

o We don’t care what agreement value Ai
the faulty processors compute

m Any processor can communicate directly
with any other processor, and the
communication mechanism is reliable (no
messages are lost or corrupted)

Spring 2000, Lecture 15

Processor Failure

m Types of failures (Christian, 1991):

e Omission failure — server doesn’t
respond to a request

e Response failure — server responds
incorrectly to a request

m Returns wrong value, has wrong effect on
resources (e.g., sets wrong values)

e Timing failure — server responds too late
(e.q., it's overloaded) or too early

e Crash failure — repeated omission
failure; server repeatedly fails to respond
to requests until it is restarted

m Amnesia crash — restarts in initial state
m Pause crash — ... in state before crash
m Halting crash — never restarts

m A failure that exhibits all of the above is
called Byzantine failure (Lamport, 1982)

e Goal: system should function correctly!

Spring 2000, Lecture 15

Byzantine Generals Problem

m There is one general, and N-1
lieutenants

e The general gives an order “attack” or
“retreat” to the lieutenants

e The general and the lieutenants are either
“loyal” or “traitors”

m A traitor may act maliciously to prevent
agreement

m Goal: to reach agreement:

¢ All loyal lieutenants should agree on the
order to perform

¢ If the general is loyal, then every order
the loyal lieutenants agree on should be
the order he sent

e Even if the general is a traitor, the loyal
lieutenants should agree with each other

e ltis irrelevant what order the traitorous
officers want to perform

Spring 2000, Lecture 15

1 General, 2 lieutenants
(1 Traitor, 2 Loyal)

m What if a lieutenant is a traitor?

attack attack
‘ attack
Eeutenandy,__%
retreat

¢ Solution: assume the general is loyal

Lieutehant2

m But — what if the general is the traitor?

“-General

attack retreat
Je S
retreat

o If each lieutenant assumes the general is
loyal, they can’t reach agreement

m 3 processors can not reach agreement in
the presence of a single faulty processor

9 Spring 2000, Lecture 15

Lamport, Shostak, and Pease’s
Oral Message Algorithm (1982)

m Solves the Byzantine Generals problem
for 3M+1 officers, with at most M traitors

m Officers can send “oral” (non-
authenticated) messages:

¢ Every officer can send a message to
every other officer

m But the officer may modify a received
message before sending it on, or may
forge a message from another officer

e Every message that it sentis delivered
correctly (i.e., no messengers captured)

m The receiver of a message knows who
sent it, and the absence of a message can
be detected (communicate in “rounds”)

m Other assumptions:

¢ A traitorous general may or may not send
a message

¢ A lieutenant’s default order is “retreat’

10 Spring 2000, Lecture 15

Lamport, Shostak, and Pease’s
Oral Message Algorithm (cont.)

m Solves the Byzantine Generals problem
for 3M+1 officers, with at most M traitors

m Algorithm for 4 officers, at most 1 traitor:
o General sends order to each lieutenant

¢ A lieutenant’s initial order is the value
received from the general, or “retreat” if
no order was received

e Each lieutenant sends his initial order to
all the other lieutenants

e Each lieutenant’s final order is the
majority of 3 orders it received (1 from the
general, 1 from each of the 2 lieutenants)

11 Spring 2000, Lecture 15

1 General, 3 lieutenants
(1 Traitor, 3 Loyal)

m What if a lieutenant is a traitor?

attack attack

attack

_attack |
<+ attack

attack attack

attack attack

retreat

_attack |
<+ attack
attack attack

) A

Lieutenant2 /retreat

retreat

m 4 processors can reach agreement in the
presence of a single faulty processor

12 Spring 2000, Lecture 15

Agreement Problems

m Byzantine agreement

e Source processor broadcasts its initial
value to all other processors

¢ All non-faulty processors must agree on
the same value

¢ If the source processor is non-faulty, then
the commonly-agreed-upon value of all
the non-faulty processors must be the
initial value of the source

m Consensus

e Every processor broadcasts its initial
value to all other processors

¢ All non-faulty processors must agree on
the same single value

o If the initial value of every non-faulty
processor is V, then the commonly-
agreed-upon value of all the non-faulty
processors must be V

13 Spring 2000, Lecture 15

Agreement Problems (cont.)

m Interactive Consistency

e Every processor broadcasts its initial
value to all other processors

¢ All non-faulty processors must agree on
the same vector V = (v1, v2, ..., vn)

o If the /-th processor is non-faulty and its
initial value is vi, then the commonly-
agreed-upon value of all the non-faulty
processors for the i-th value must be vi

1Got{1,2,x,4) 1Got 2Got 4 Got
2Goti{1,2,y, 4} (,2,v,4) (1,2,x 4 (1,2,x 4
3Goti{1,2,3, 4} {a,b,c,d (e,f,g.h (1.2,v 4
4Got(1,2,z 4) (1,2,2,4) (1,2,2,4 Gjkl

Faulty
processor

{a} {b} {e)

Fig. 4-23. The Byzantine generals problem for 3 loyal generals and 1 traitor.
(a) The their troop hs (in units of 1K). (b) The vec-
tors that each generai assembles based on (a). (c) The vectors that each gen-
eral receives in step 2.

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

14 Spring 2000, Lecture 15

Fault-Tolerant
Physical Clock Synchronization

m 3 basic assumptions:

¢ All clocks are initially synchronized to
approximately the same value

e A non-faulty process’s clock runs at
approximately the correct rate

¢ A non-faulty process can read the clock
value of another non-faulty clock with at
most a small error

m Interactive Convergence Algorithm:

e Each process reads the value of all other
processes’ clocks, and sets its clock
value to the average of these values

m If a clock value differs from its own clock
by more than 9, it replaces that value by
its own clock value in taking the average

e If the clocks are synchronized often
enough, they will converge to within a
desired degree

15 Spring 2000, Lecture 15

Fault-Tolerant
Physical Clock Synchronization (cont.)

m Interactive Consistency Algorithm:

e Takes median of clock values (instead of
mean)

m Provides a good estimate, since number
of faulty clocks should be low

¢ Two new conditions:

m Any two processes obtain approximately
the same value for a process P’s clock
(even if process P is faulty)

m If Q is a non-faulty process, then every
non-faulty process obtains approximately
the correct value for process Q’s clock

m Note: this is agreement!

e Algorithm:

m Use solution to Interactive Consistency
problem to collect clock values for all
clocks

m Set local clock to be median of the
collected clock values

16 Spring 2000, Lecture 15

