
1

CS 6/73201 Project #1 Advanced OS

Due via email by 11:59pm on Friday 10 March 2000

Introduction

In this assignment, you are given a working thread system, semaphores for synchronization, and a “Post-Office”
mailboxed-based network communication facility, all of which are part of Nachos. Your job is to implement a
routing layer on top of the Nachos post office. This project will comprise 20% of your final course grade.

Getting Started

To begin, review the material presented in Lecture 09 on Monday 21 February, and then read the Nachos
“Overview paper”, available on the class web page.

Second, read the file “Project 1 — Getting Started” on the class web page. Copy the necessary files to your
account. Compile Nachos to produce an executable program “nachos” in the threads directory, and make sure it
runs and produces the expected output.

Installing and Testing a Version of Nachos That Supports Networking

When you compiled Nachos in the threads directory as described in “Project 1 — Getting Started”, only part of
Nachos — just the thread system and the emulated machine — was compiled. For this project, you will need to
compile a larger, more complete version of Nachos. You’ll have to copy over some more Nachos files, so before
you do so, you might want to clean up your account a bit. First, “cd” to the directory containing your Makefile
and threads directory, and type “make clean” to remove all your old .o files in the threads directory.

When you got started, you copied all of the files in the threads and machine directory from
~walker/pub/nachos–3.4–hp/code (assuming you used aegis) to your account For this project, you must
copy a l l of the files in the walker/pub/nachos–3.4–hp/code to your account. When you finish, edit the
Makefile to comment out the 2 lines that compile into the threads directory, and uncomment the 2 lines that
compile into the network directory. Now type “make”, and you’ll get a new executable nachos file — but this
time, it will be placed in the network directory, rather than the threads directory.

Reading the Nachos Source Code

Now start reading the Nachos source code. I suggest that you read the files in the order described below, and as
you do so, read the corresponding sections in Archna Kalra’s “Salsa — An Operating Systems Tutorial” and Thomas
Narten’s “A Road Map Through Nachos”.

To begin, read through the following files. When you compiled Nachos into the threads directory, the Makefile
turned on the THREAD switch. Notice what code in these files is included when they are compiled using the
THREAD switch, and what code is omitted when they are not compiled with the USER_PROGRAM, FILESYS,
and NETWORK switch. Notice what command line arguments you can give to Nachos, and what global data
structures are created.

• threads/main.cc, threads/threadtest.cc — a simple test of the thread routines.

• threads/system.h, threads/system.cc — Nachos startup/shutdown routines.

Then read through the following files, and see how Nachos implements and schedules threads. Study the thread
class, its private data, and its public member functions. Study the Scheduler class, and how it dispatches threads.
Glance at the code for context switching, but don’t read it in detail.

• threads/thread.h, threads/thread.cc — thread data structures and thread operations such as thread fork,
thread sleep and thread finish.

• threads/scheduler.h, threads/scheduler.cc — manages the list of threads that are ready to run.

• threads/switch.h, threads/switch.s — assembly language magic for starting up threads and context
switching between them. Don’t worry if you don’t understand these two files — you are not responsible for
understanding them.

2

Next, read through the following files to see how Nachos implements semaphores, and how it puts them to a
practical use (in the SynchList class). Note that the structure for locks and condition variables is in place, but the
code to implement them is missing.

• threads/synch.h, threads/synch.cc — synchronization routines: semaphores, locks, and condition
variables.

• threads/synchlist.h, threads/synchlist.cc — synchronized access to lists using locks and condition
variables (useful as an example of the use of synchronization primitives).

Next, skim through the following files, so you will recognize the functions when you encounter them elsewhere.
After reading about DEBUG statements, go back through the files above, and see which debugging options may be
useful when working with threads.

• threads/list.h, threads/list.cc — generic list management.

• threads/utility.h, threads/utility.cc — some useful definitions and debugging routines.

Now that you’ve gotten an overview of the Nachos operating system, it’s time to look at the emulated machine
underneath (all of these files are in the machine directory). For now, just skim through the files that emulate the
machine. Warning: since these files represent the “simulated” hardware underneath Nachos, you are not allowed to
change them — that would be equivalent to modifying the hardware, which an OS designer isn’t at liberty to do!

• machine/machine.h, machine/machine.cc — emulates the part of the machine that executes user
programs: main memory, processor registers, etc.

• machine/mipssim.cc — emulates the integer instruction set of a MIPS R2/3000 CPU.

• machine/interrupt.h, machine/interrupt.cc — manage enabling and disabling interrupts as part of the
machine emulation.

• machine/timer.h, machine/timer.cc — emulate a clock that periodically causes an interrupt to occur.

• machine/network.h, machine/network.cc — emulation of the physical network hardware. The network
interface is similar to that of the console, except that the transmission unit is a packet rather than a character.
The network provides ordered, unreliable transmission of limited size packets between nodes. All routing
issues (how the message gets from node to node) are taken care of by the network.

• machine/stats.h — collect interesting statistics.

Finally, one last set of files (in the network directory) provides a “Post Office” protocol that allows multiple
copies of Nachos to communicate over the network by sending messages between “mailboxes”. There is no
description of this code in “A Road Map Through Nachos”; however, it is described in Archna Kalra’s “Salsa — An
Operating Systems Tutorial”, and a detailed discussion of the Nachos networking facility (along with some general
comments on networking) is given in “Nachos Networking Background” (from Berkeley, also available on the class
web page). Read that material, and read through these files.

• network/nettest.cc — network test routines.

• network/post.h, network/post.cc — a post office abstraction, built in software on top of the network.
This provides synchronized delivery and receipt of messages to/from specific mailboxes; there may be multiple
mailboxes per machine.

Some General Comments on Working with Nachos and Networking

After reading the code in general, the second step in this project is to read and understand the networking system
in Nachos. There is a simple test of the code described below, but this test will not work unless you have correctly
implemented locks and condition variables as described in Problem 1.

Assuming you have locks and condition variables correctly implemented, if you run two copies of
network/nachos, each copy (running as a separate a UNIX process) will act as a node in the network, and a
simulated network (implemented via UNIX sockets) will provide the communication medium between these nodes.
You can test the basic network functionality by running “nachos –m 0 –o 1” and “nachos –m 1 –o 0”
simultaneously (preferably in different windows so you can more easily see what is happening. (Warning — did I
mention yet that you need to have locks and condition variables implemented correctly for this test to work???)

The post office abstraction provided by Nachos is more convenient than working with the raw network. You
could continue this layering process — at each level, removing one physical constraint and replacing it with an
abstraction. Thus, reliable messages can be built on top of an unreliable service, large messages can be built on top
of fixed-length messages, etc. For a detailed discussion of the Nachos networking facility, see “Nachos Networking
Background”, available on the class web page (this file is an 8-page PostScript document).

3

To test the higher-level abstractions, the low-level Nachos network emulation can be told to randomly drop
packets. The Nachos documentation says that you do this by using the command line option “–n #”, where the
number, between 0 and 1, reflects the likelihood that a packet will be successfully delivered. However, the
documentation is wrong; the actual command line option (defined in threads/system.cc) is “-l #” (this is a lower-
case “L”, not a number one). To simplify matters, you may assume that packet delivery is “fail-safe”; packets may
be dropped, but if a packet is delivered, its contents have not been corrupted (although in practice, a hardware or
software checksum would be needed to detect this kind of error).

Tracing Through and Debugging Nachos Source Code

To trace through code in Nachos, there are three main approaches: (1) using the gdb debugger, (2) using printf,
and (3) using the DEBUG function provided by Nachos. The debugger gdb usually works, and is often the best
alternative, although tracking across a call to switch can be confusing. Adding calls to printf often works, but
sometimes fails since printf does not always flush the stdout buffer as expected.

The final debugging option, which is particularly useful when working with threads, is to use the Nachos
DEBUG function, which is declared in threads/utility.h. The command line options to Nachos are specified in
threads/main.cc and threads/system.cc; if you look at those files you will see that the command line option
for debugging is “–d”, which should be followed by a flag to tell Nachos which type of debugging messages to print
(these flags are defined in threads/utility.h). To look at the various debugging statements that are included in the
thread system in Nachos, execute the command “grep DEBUG *h *cc” in the threads directory — as you can see,
all of the those debugging statements have the “t” flag. In the machine directory, the debugging statements have
“i” and “m” flags. Putting all this together, you might want to run Nachos as “nachos -d t”, “nachos -d i”, or
“nachos -d ti” to see what your code is doing while working with threads. If you need more information, add more
debugging statements (add your own debugging flag), or use the Nachos ASSERT function.

Writing Properly Synchronized Code

In your solution to this project, you may need to write code that synchronizes multiple threads. Note that
properly synchronized code should work no matter what order the scheduler chooses to run the threads on the ready
list. In other words, the TA should be able to put a call to Thread::Yield (causing the scheduler to choose another
thread to run) anywhere in your code where interrupts are enabled without changing the correctness of your code.

Adding New Files to Nachos

If you need to add a new file to Nachos, it’s very easy to do so. However, the Nachos Makefile structure is
pretty complicated, so if may take you a while to figure out how to do this. For example, suppose you want to add
the files network/blat.h and network/blat.cc. To do this, edit the file Makefile.common, and update the
definitions of NETWORK_H, NETWORK_C, and NETWORK_O. That’s all you have to do! Then, the next time
you run “make”, the Makefile in the network directory will be updated automatically, and your new files will be
compiled and lined into Nachos.

Identifying Your Changes

So that the TA and I can easily identify which code you have changed or added, surround all changes and additions
in your code by comments in the following form:

// PROJECT 1 CHANGES START HERE

<your changed code goes here>

// PROJECT 1 CHANGES END HERE

Use your own judgment about how much code to surround in a single comment.

The Problems

1. (0 points) Implement locks and condition variables using the Nachos semaphores and other high-level functions.
More specifically, the public interface to locks and condition variables has been provided in threads/synch.h
(read that file, including the comments). What you need to do is to define any necessary private data and
implement the interface in threads/synch.cc.

After writing your code, compare your implementation to the one in ~walker/pub/synch.cc and
~walker/pub/synch.h. Note that this part of the assignment is not for credit, it is just suggested that you

4

implement locks and condition variables on your own to test your understanding of them, but if you choose not
to, then you can simply copy the working version from ~walker/pub.

2. (60 points) Implement a routing layer on top of the nachos Post Office. Your routing layer may assume a static
network to start, but should update its routing tables dynamically if a router fails (see Problem 3). For
simplicity, you need only consider messages that can be contained within a single packet, so dividing messages
into packets, reassembling messages, etc. is not part of this problem. You can also assume that packets will not
be lost or corrupted. Since Nachos does not support a preemptive CPU scheduler, if you use multiple threads
you should include a large number of calles to currentThread->yield throughout your code so that all threads get a
chance to run. In a file called p1.overview, write an overview describing your implementation and any design
decisions that you made

3. (40 points) Implement methods to test your routing layer. You should have a network of at least 3 routers and
at least 3 hosts. Implement some way to “kill” a router to demonstrate that the other routers will adapt to its
absence. In a file called p1.testing, write an overview describing your network and testing strategy and how it
demonstrates that the routing layer works.

Where to Get Help

Help is available from Prof. Walker and from Mr. Ziming Sun (who will act as the course TA for programming
projects, but n o t for helping with homework assignments, exam preparation, etc.):

• For questions on what the assignment is asking, please contact Prof. Walker.

• For questions on Nachos, please contact either Prof. Walker or Mr. Sun.

• For help with your code or debugging, please contact Mr. Sun (n o t Prof. Walker)

Our office hours are on the class web page, and may be extended if necessary as the project deadline approaches; see
the class web page for any announcements of extended office hours.

Cooperation versus Cheating

See the class syllabus, and contact me if you have any questions. You are allowed to discuss the problems with
your friends, and to study the Nachos internals with your friends, but you are not allowed to write pseudo-code to
solve the problems with your friends, and you are certainly not allowed to copy anyone else’s code.

Submitting Your Project

When you finish, submit the project overview file and all files that you modified to the TA. Assuming you have
the overview files proj1.overview and p1.testing, and you’ve modified the Makefile and
network/nettest.cc, and you’ve and added the file network/route.cc, you can submit those files to the TA for
grading by typing the following commands in the directory that contains the Makefile and threads and network
directories:

shar proj1.overview proj1.testing Makefile network/nettest.cc
network/route.cc >shar.out (type all this on one line)

elm -s “Project 1 for Your Name Here” zsun@mcs.kent.edu
<shar.out (type all this on one line)

rm shar.out

The first line puts your files into a single file called shar.out, and the second line emails that file to the TA
(replace “Your Name Here” with your own name).

Important warning — once you submit your files, DON’T TOUCH THEM AGAIN — if your email
didn’t reach the TA, or something happens, the TA may need to ask you to resubmit your files. However, before he
lets you do so, he will ask you to log on in his presence, and he will check the modification dates on your files to
make sure that they haven’t been modified after the due date (if they have been, you will be assessed the appropriate
late penalties).

The project is due at 11:59pm on Friday 10 March 1999. For a discussion of my late policy, see the class
syllabus. However, you should probably plan on starting early, ending on time, and then spending the weekend
resting or working on something else, instead of trying to perfect a late project.

