
1 Spring 2001, Lecture 06

Communication Models in
Distributed Systems

n Peer-to-peer

● Producer / consumer

n Client / server

● Clients ask dedicated server to perform
some specific service

n Central coordinator (many-to-one)

● Nodes send information to coordinator;
coordinator makes decision

● Central point of failure

n Distributed consensus (one-to-many)

● Nodes send information to each other;
group as a whole reaches a consensus

● Large amount of communication required

2 Spring 2001, Lecture 06

The Producer-Consumer Problem

n One process is a producer of information;
another is a consumer of that information

n Solution when the two processes have a
shared memory in common:

var buffer: array[0..n-1] of items; /* circular array */
in = 0
out = 0

/* producer */ /* consumer */
repeat forever repeat forever

… while (in == out)
produce item nextp do nothing
… nextc = buffer[out]
while (in+1 mod n == out) out = out+1 mod n

do nothing …
buffer[in] = nextp consume item nextc
in = in+1 mod n …

end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6
n = 7

3 Spring 2001, Lecture 06

Client / Server Model using
Message Passing

n Client / server model

● Server = process (or collection of
processes) that provides a service
n Example: name service, file service

● Client — process that uses the service

● Request / reply protocol:
n Client sends request message to server,

asking it to perform some service

n Server performs service, sends reply
message containing results or error code

client

request

reply

server

request

reply

kernelkernel

network

4 Spring 2001, Lecture 06

Message Passing using
Send & Receive

n Blocking send:

● send(destination-process, message)

● Sends a message to another process, then
blocks (i.e., gets suspended by OS) until
message is received

n Blocking receive:

● receive(source-process, message)

● Blocks until a message is received (may
be minutes, hours, …)

n Producer-Consumer problem:

/* producer */ /* consumer */
repeat forever repeat forever

… receive(producer,nextc)
produce item nextp …
… consume item nextc
send(consumer, nextp) …

end repeat end repeat

5 Spring 2001, Lecture 06

Buffering

n Link may be able to temporarily queue
some messages during communication

n Zero capacity: (queue of length 0)

● Blocking communication

● Sender must wait until receiver receives
the message — this synchronization to
exchange data is called a rendezvous

n Bounded capacity: (queue of length n)

● If receiver’s queue is not full, new
message is put on queue, and sender
can continue executing immediately

● If queue is full, sender must block until
space is available in the queue

n Unbounded capacity: (infinite queue)

● Non-blocking communication

● Sender can always continue
6 Spring 2001, Lecture 06

Non-blocking Send & Receive

n Non-blocking send:

● Sends, then goes on to next instruction
without waiting for an acknowledgment

● Advantage: sending process can execute
in parallel with message transmission

● Problem: must avoid modifying message
buffer until message has been received
(but how do you know?)

1.Copy message from user space to kernel
space, then let process continue

2.Keep message in user space, have kernel
send interrupt when message has been
received (difficult to program)

n Non-blocking receive:

● Receive returns with buffer, but doesn’t
know if there’s a message there or not
n Must poll or receive interrupt when

message is ready and process should
perform a receive (difficult to program)

7 Spring 2001, Lecture 06

Direct vs. Indirect Communication

n Direct communication — explicitly name
the process you’re communicating with

n send(destination-process, message)

n receive(source-process, message)

● Variation: receiver may be able to use a
“wildcard” to receive from any source

● Receiver can not distinguish between
multiple “types” of messages from sender

n Indirect communication — communicate
using mailboxes (owned by receiver)

n send(mailbox, message)
n receive(mailbox, message)

● Variation: … “wildcard” to receive from
any source into that mailbox

● Receiver can distinguish between
multiple “types” of messages from sender

● Some systems use “tags” instead of
mailboxes

8 Spring 2001, Lecture 06

LAM / MPI

n MPI = Message Passing Interface

n LAM = Local Area Multicomputer

● Implementation of MPI from the OSC that
“simulates” a multicomputer

n See AOS class web page

● “Using LAM/MPI in the KSU MCS Dept.”

● “MAN T&EC MPI Tutorial”

● Other information is optional

n MPI uses the SPMD (Same Program,
Different Data) programming model

● Same program runs on all machines

● May choose to have one program run
“master” code, and others run “worker /
slave” code

