
1 Spring 2001, Lecture 08

Client / Server Model using
Message Passing (Review)

n Client / server model

● Server = process (or collection of
processes) that provides a service
n Example: name service, file service

● Client — process that uses the service

● Request / reply protocol:
n Client sends request message to server,

asking it to perform some service

n Server performs service, sends reply
message containing results or error code

client

request

reply

server

request

reply

kernelkernel

network

2 Spring 2001, Lecture 08

Why is Message Passing not Ideal?

n Disadvantages of client-server
communication via message passing:

● Message passing is I/O oriented, rather
than request/result oriented

● Programmer has to explicitly code all
synchronization

● Programmer may have to code format
conversion, flow control, and error control

n Goal — heterogeneity — support
different machines, different OSs

● Portability — applications should be
trivially portable to machines of other
vendors

● Interoperability — clients will always get
same service, regardless of how vendor
has implemented that service

● OS should handle data conversion
between different types of machines

3 Spring 2001, Lecture 08

Remote Procedure Call (RPC)

n RPC mechanism:

● Hides message-passing I/O from the
programmer

● Looks (almost) like a procedure call —
but client invokes a procedure on a server

n RPC invocation (high-level view):

● Calling process (client) is suspended

● Parameters of procedure are passed
across network to called process (server)

● Server executes procedure

● Return parameters are sent back across
network

● Calling process resumes

n Invented by Birrell & Nelson at Xerox
PARC, described in February 1984 ACM
Transactions on Computer Systems

4 Spring 2001, Lecture 08

RPC Invocation

n Each RPC invocation by a client process
calls a client stub, which builds a message
and sends it to a server stub

n The server stub uses the message to
generate a local procedure call to the server

n If the local procedure call returns a value, the
server stub builds a message and sends it to
the client stub, which receives it and returns
the result(s) to the client

client

call

return

server

call

return

kernelkernel

network

client
stub

pack
parameters

unpack
results

unpack
parameters

pack
results

server
stub

5 Spring 2001, Lecture 08

I/O Protection

n To prevent illegal I/O, or simultaneous
I/O requests from multiple processes, the
OS typically performs all I/O via
privileged instructions

● User programs must make a system call
to the OS to perform I/O

n When user process makes a system call:

● A trap (software-generated interrupt)
occurs, which causes:
n The appropriate trap handler to be invoked

using the trap vector

n Kernel mode to be set

● The trap handler:
n Saves process state
n Performs requested I/O (if appropriate)

n Restores state, sets user mode, and
returns to calling program

6 Spring 2001, Lecture 08

RPC Invocation (More Detailed)

1. Client procedure calls the client stub

2. Client stub packs parameters into
message and traps to the kernel

3. Kernel sends message to remote kernel

4. Remote kernel gives message to server
stub

5. Server stub unpacks parameters and
calls server

6. Server executes procedure and returns
results to server stub

7. Server stub packs result(s) in message
and traps to kernel

8. Remote kernel sends message to local
kernel

9. Local kernel gives message to client stub

10. Client stub unpacks result(s) and
returns them to client

7 Spring 2001, Lecture 08

Parameter Passing

n Parameter marshaling — client stub
packs parameters into a message

n Parameter unmarshaling — server stub
unpacks parameters for local procedure

nr_hits = query(key, 10, result); int query(int key, int number, tuple values)
{
 …
 return(num_hits);
}

marshal unmarshal

network

typedef struct {
 double item1;
 int item2;
 char *annotation;
} tuple;

char add(int key, tuple value);
char remove(int key, tuple value);
int query(int key, int number, tuple values[]);

nr_hits = query(key, 10, result); int query(int key, int number, tuple values)
{
 …
 return(num_hits);
}

unmarshal marshal

network

8 Spring 2001, Lecture 08

Parameter Passing (cont.)

n Handle different internal representations

● ASCII vs. EBCDIC vs. …

● 1’s comp. vs. 2’s comp. vs. floating-point

● Little endian vs. big endian

● Establish a canonical (standard) form?

n What types of passing are supported?

● Remote procedure can’t access global
variables — must pass all necessary data

● Call-by-value (procedure gets a copy of
data) — pass parameters in message

● Call-by-reference (procedure gets a
pointer to data)
n Can’t do call-by-reference

n Do call-by-copy / restore instead
– Instead of pointer, pass item pointed to
– Procedure modifies it, then pass it back

n Inconsistency if client doesn’t block

9 Spring 2001, Lecture 08

Generating Stubs

n C and C++ may not be descriptive
enough to allow stubs to be generated
automatically

● Which are in, in-out, and out parameters?

● Exactly what size are parameters (e.g.,
integers, arrays)?

● What does it mean to pass a pointer?

n Using OSF’s DCE Interface Definition
Language (IDL) to specify procedure
signatures for stub generation:

typedef struct {
 double item1;
 int item2;
 char *annotation;
} tuple;

char add(int key, tuple value);
char remove(int key, tuple value);
int query(int key, int number, tuple values[]);

inerface db
{
typedef struct {
 double item1;
 long item2;
 [string, ptr]
 ISO_LATIN_1
 *annotation;
} tuple;

boolean add (
 [in] long key,
 [in] tuple value
);

boolean remove (
 [in] long key,
 [in] tuple value
);

long query (
 [in] long key,
 [in] long number,
 [out, size_is(number)]
 tuple values[]
);

10 Spring 2001, Lecture 08

Binding

n Binding = determining the server and
remote procedure to call

n Static binding — addresses of servers
are hardwired (e.g., Ethernet number)

● Inflexible if a server changes location

● Poor if there are multiple copies of a
server

n Dynamic binding — dynamically assign
server names

● Broadcast a “where is the server?”
message, wait for response from server

● Use a binding server (binder)
n Servers register / deregister their services

with the binding server
n When a client calls a remote procedure for

the first time, it queries the binding server
for a registered server to call

11 Spring 2001, Lecture 08

Stateful vs. Stateless Server
(Example = File Server)

n Stateful server — server maintains state
information for each client for each file

● Connection-oriented (open file, read /
write file, close file)

✔ Enables server optimizations like read-
ahead (prefetching) and file locking

✘ Difficult to recover state after a crash

n Stateless server — server does not
maintain state information for each client

● Each request is self-contained (file,
position, access)
n Connectionless (open and close are

implied)

✔ If server crashes, client can simply keep
retransmitting requests until it recovers

✘ No server optimizations like above

✘ File operations must be idempotent

