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Client / Server Model using
Message Passing  and RPC (Review)

n Message Passing

n Remote Procedure Call (RPC)
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Conventional View of Processes

n A process can be viewed two ways:

● A unit of resource ownership
n A process has an address space,

containing program code and data

n A process may have open files, may be
using an I/O device, etc.

● A unit of scheduling
n The CPU scheduler dispatches one

process at a time onto the CPU

n Associated with a process are values in
the PC, SP, and other registers

n Insight (~1988) — these two are usually
linked, but they don’t have to be

n In many recent operating systems (UNIX,
Windows NT), the two are independent:

● Process = unit of resource ownership

● Thread = unit of scheduling
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Processes vs. Threads

n Process = unit of resource ownership

● A process (sometimes called a
heavyweight process) has:
n Address space

n Program code

n Global variables, heap, stack
n OS resources (files, I/O devices, etc.)

n Thread = unit of scheduling

● A thread (sometimes called a lightweight
process) is a single sequential execution
stream within a process

● A thread shares with other threads:
n Address space, program code
n Global variables, heap

n OS resources (files, I/O devices)

● A thread has its own:
n Registers, Program Counter (PC)

n Stack, Stack Pointer (SP)
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Processes vs. Threads

n A thread is bound to a particular process

● A process may contain multiple threads of
control inside it

● Threads can block, create children, etc.

n All of the threads in a process:

● Share address space, program code,
global variables, heap, and OS resources

● Execute concurrently (has its own
register, PC, SP, etc. values)
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Why Threads?

n A process with multiple threads makes a
great server (e.g., printer server):

● Have one server process, many “worker”
threads — if one thread blocks (e.g., on a
read), others can still continue executing

● Threads can share common data; don’t
need to use inter-process communication

● Can take advantage of multiprocessors

n Threads are cheap!

● Cheap to create — only need a stack and
storage for registers

● Use very little resources — don’t need
new address space, global data, program
code, or OS resources

● Context switches are fast — only have to
save / restore  PC, SP, and registers

n But… no protection between threads!
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What Kinds of Programs Can Be
Multithreaded?

n Good programs to multithread:

● Server which needs to process multiple
requests simultaneously

● Programs with multiple independent tasks
(debugger needs to run and monitor
program, keep its GUI active, and display
an interactive data inspector and dynamic
call grapher)

● Repetitive numerical tasks — break large
problem, such as weather prediction,
down into small pieces and assign each
piece to a separate thread

n Programs difficult to multithread:

● Programs that don’t require any
multiprocessing (99% of all programs)

● Programs that require multiple processes
(maybe one needs to run as root)
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Using Threads in a Server

n Dispatcher-worker model

● Dispatcher  thread receives all requests,
hands each to an idle worker  thread,
worker thread processes request

● Worker threads are either created
dynamically, or a fixed-size pool of
workers is created when the server starts

n Team model

● All threads are equals; each thread
processes incoming requests on its own

● Good for handling multiple types of
requests within a single server

n Pipeline model

● First thread partially processes request,
then hands it off to second thread, which
processes some more, then hands it off
to third thread, etc.
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The “Bank” Analogy

n Multiple tellers perform the same job —
handling deposits, withdrawals, etc.

● Customers wait in a queue for next
available teller, go to whomever is free
(one teller is the same as any other)

n Multiple officers perform other jobs —
opening accounts, wiring money, etc.

n Bank has physical resources — desks,
chairs, vault, teller stations, etc. — all
tellers and officers share those resources

n If customer base increases, it’s easy to
add more tellers

● If one teller gets tied up handling a
difficult customer, other tellers can
continue processing customers

● It’s much harder to build a new bank
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User-Level Threads

n User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

✔ Doesn’t require modification to the OS

✔ Simple representation — each thread is
represented simply by a PC, registers,
stack, and a small control block, all stored
in the user process’ address space

✔ Simple management — creating a new
thread, switching between threads, and
synchronization between threads can all
be done without intervention of the kernel

✔ Fast — thread switching is not much
more expensive than a procedure call

✔ Flexible — CPU scheduling (among those
threads) can be customized to suit the
needs of the algorithm
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User-Level Threads (cont.)

n User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

✘ Lack of coordination between threads and
OS kernel
n Process as a whole gets one time slice
n Same time slice, whether process has 1

thread or 1000 threads

n Also — up to each thread to relinquish
control to other threads in that process

✘ Requires non-blocking system calls (i.e.,
a multithreaded kernel)
n Otherwise, entire process will blocked in

the kernel, even if there are runnable
threads left in the process

✘ If one thread causes a page fault, the
entire process blocks
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Kernel-Level Threads

n Kernel-level threads = kernel provides
system calls to create and manage
threads

✔ Kernel has full knowledge of all threads
n Scheduler may choose to give a process

with 10 threads more time than process
with only 1 thread

✔ Good for applications that frequently
block (e.g., server processes with
frequent interprocess communication)

✘ Slow — thread operations are 100s of
times slower than for user-level threads

✘ Significant overhead and increased
kernel complexity — kernel must manage
and schedule threads as well as
processes
n Requires a full thread control block (TCB)

for each thread
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Two-Level Thread Model
(Digital UNIX, Solaris, IRIX, HP-UX)

n User-level threads for user processes

● “Lightweight process” (LWP) serves as a
“virtual CPU” where user threads can run

n Kernel-level threads for use by kernel

● One for each LWP

● Others perform tasks not related to LWPs

n OS supports multiprocessor systems
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Two-Level Thread Model
(cont.)

n Process is called a “task”, and contains
user-level threads and LWPs

● A set of user-level threads can be
multiplexed over one or more LWPs

● It’s up to the process/task to schedule
user-level threads onto LWPs

● If a user-level thread blocks, the LWP and
its associated kernel thread continue

n The OS only schedules kernel threads

● If a kernel thread blocks, all its LWPs and
user-level threads block

n A set of kernel-level threads may be
multiplexed over a set of processors

● Good for multiprocessors

● Other kernel-level threads can be pinned
to a specific processor


