Client / Server Model using
Message Passing and RPC (Review)

m Message Passing

request request
client Y
k server
reply 4/“9P|y
.. kemel keﬂrnel T
< network

m Remote Procedure Call (RPC)

pack unpack
call | parameters parameters 1 cg|

client | client y server !

! stub stub ' server
return " return

+ unpack pack
1 results results |

- Ckernel kL Sk Keinel:

< network
1 Spring 2001, Lecture 09

Conventional View of Processes

m A process can be viewed two ways:

e A unit of resource ownership

m A process has an address space,
containing program code and data

m A process may have open files, may be
using an I/O device, etc.

e A unit of scheduling
m The CPU scheduler dispatches one
process at a time onto the CPU
m Associated with a process are values in
the PC, SP, and other registers

m Insight (~1988) — these two are usually
linked, but they don’t have to be

m In many recent operating systems (UNIX,
Windows NT), the two are independent:

e Process = unit of resource ownership

e Thread = unit of scheduling

2 Spring 2001, Lecture 09

Processes vs. Threads

B Process = unit of resource ownership

e A process (sometimes called a
heavyweight process) has:
m Address space
m Program code
m Global variables, heap, stack
m OS resources (files, /0O devices, etc.)

m Thread = unit of scheduling

¢ A thread (sometimes called a lightweight
process) is a single sequential execution
stream within a process

e A thread shares with other threads:
m Address space, program code
m Global variables, heap
m OS resources (files, I/O devices)

¢ A thread has its own:
m Registers, Program Counter (PC)
m Stack, Stack Pointer (SP)

3 Spring 2001, Lecture 09

Processes vs. Threads

process X's address space

shared global data
stack] [stack
<PC
<-PC
thread A thread B
access to open file
printer "output.txt"

m A thread is bound to a particular process

e A process may contain multiple threads of
control inside it

e Threads can block, create children, etc.

m All of the threads in a process:

e Share address space, program code,
global variables, heap, and OS resources

e Execute concurrently (has its own
register, PC, SP, etc. values)

4 Spring 2001, Lecture 09

Why Threads?

m A process with multiple threads makes a
great server (e.g., printer server):

e Have one server process, many “worker”
threads — if one thread blocks (e.g., on a
read), others can still continue executing

e Threads can share common data; don’t
need to use inter-process communication

¢ Can take advantage of multiprocessors

m Threads are cheap!

e Cheap to create — only need a stack and
storage for registers

¢ Use very little resources — don’t need
new address space, global data, program
code, or OS resources

o Context switches are fast — only have to
save / restore PC, SP, and registers

m But... no protection between threads!

5 Spring 2001, Lecture 09

What Kinds of Programs Can Be
Multithreaded?

m Good programs to multithread:

e Server which needs to process multiple
requests simultaneously

e Programs with multiple independent tasks
(debugger needs to run and monitor
program, keep its GUI active, and display
an interactive data inspector and dynamic
call grapher)

¢ Repetitive numerical tasks — break large
problem, such as weather prediction,
down into small pieces and assign each
piece to a separate thread

m Programs difficult to multithread:

e Programs that don’t require any
multiprocessing (99% of all programs)

e Programs that require multiple processes
(maybe one needs to run as root)

Spring 2001, Lecture 09

Using Threads in a Server

m Dispatcher-worker model

e Dispatcher thread receives all requests,
hands each to an idle worker thread,
worker thread processes request

¢ Worker threads are either created
dynamically, or a fixed-size pool of
workers is created when the server starts

m Team model

e All threads are equals; each thread
processes incoming requests on its own

¢ Good for handling multiple types of
requests within a single server

m Pipeline model

o First thread partially processes request,
then hands it off to second thread, which
processes some more, then hands it off
to third thread, etc.

7 Spring 2001, Lecture 09

The “Bank” Analogy

m Multiple tellers perform the same job —
handling deposits, withdrawals, etc.

e Customers wait in a queue for next
available teller, go to whomever is free
(one teller is the same as any other)

m Multiple officers perform other jobs —
opening accounts, wiring money, etc.

m Bank has physical resources — desks,
chairs, vault, teller stations, etc. — all
tellers and officers share those resources

m If customer base increases, it's easy to
add more tellers

o If one teller gets tied up handling a
difficult customer, other tellers can
continue processing customers

e It's much harder to build a new bank

Spring 2001, Lecture 09

User-Level Threads

m User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

[0 Doesn’t require modification to the OS

[0 Simple representation — each thread is
represented simply by a PC, registers,
stack, and a small control block, all stored
in the user process’ address space

[0 Simple management — creating a new
thread, switching between threads, and
synchronization between threads can all
be done without intervention of the kernel

[0 Fast — thread switching is not much
more expensive than a procedure call

[Flexible — CPU scheduling (among those
threads) can be customized to suit the
needs of the algorithm

9 Spring 2001, Lecture 09

User-Level Threads (cont.)

m User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

[JLack of coordination between threads and
OS kernel
m Process as a whole gets one time slice

m Same time slice, whether process has 1
thread or 1000 threads

m Also — up to each thread to relinquish
control to other threads in that process

[] Requires non-blocking system calls (i.e.,
a multithreaded kernel)
m Otherwise, entire process will blocked in
the kernel, even if there are runnable
threads left in the process

[1If one thread causes a page fault, the
entire process blocks

10 Spring 2001, Lecture 09

Kernel-Level Threads

m Kernel-level threads = kernel provides
system calls to create and manage
threads

[0 Kernel has full knowledge of all threads

m Scheduler may choose to give a process
with 10 threads more time than process
with only 1 thread

[J Good for applications that frequently
block (e.g., server processes with
frequent interprocess communication)

[] Slow — thread operations are 100s of
times slower than for user-level threads

L] Significant overhead and increased
kernel complexity — kernel must manage
and schedule threads as well as
processes

m Requires a full thread control block (TCB)
for each thread

11 Spring 2001, Lecture 09

Two-Level Thread Model
(Digital UNIX, Solaris, IRIX, HP-UX)

task 1 task 2 task 3 user-level
%ié %é 1 g

lightweight
|_— process

e
. .

CPU CPU CPU CPU

m User-level threads for user processes
e “Lightweight process” (LWP) serves as a
“virtual CPU” where user threads can run
m Kernel-level threads for use by kernel
e One for each LWP

e Others perform tasks not related to LWPs

m OS supports multiprocessor systems

12 Spring 2001, Lecture 09

Two-Level Thread Model
(cont.)

m Process is called a “task”, and contains
user-level threads and LWPs

o A set of user-level threads can be
multiplexed over one or more LWPs

e It's up to the processftask to schedule
user-level threads onto LWPs

o If a user-level thread blocks, the LWP and
its associated kernel thread continue
m The OS only schedules kernel threads
o If a kernel thread blocks, all its LWPs and

user-level threads block

m A set of kernel-level threads may be
multiplexed over a set of processors

e Good for multiprocessors

e Other kernel-level threads can be pinned
to a specific processor

13 Spring 2001, Lecture 09

