
1 Spring 2001, Lecture 09

Client / Server Model using
Message Passing and RPC (Review)

n Message Passing

n Remote Procedure Call (RPC)

client

request

reply

server

request

reply

kernelkernel

network

client

call

return

server

call

return

kernelkernel

network

client
stub

pack
parameters

unpack
results

unpack
parameters

pack
results

server
stub

2 Spring 2001, Lecture 09

Conventional View of Processes

n A process can be viewed two ways:

● A unit of resource ownership
n A process has an address space,

containing program code and data

n A process may have open files, may be
using an I/O device, etc.

● A unit of scheduling
n The CPU scheduler dispatches one

process at a time onto the CPU

n Associated with a process are values in
the PC, SP, and other registers

n Insight (~1988) — these two are usually
linked, but they don’t have to be

n In many recent operating systems (UNIX,
Windows NT), the two are independent:

● Process = unit of resource ownership

● Thread = unit of scheduling

3 Spring 2001, Lecture 09

Processes vs. Threads

n Process = unit of resource ownership

● A process (sometimes called a
heavyweight process) has:
n Address space

n Program code

n Global variables, heap, stack
n OS resources (files, I/O devices, etc.)

n Thread = unit of scheduling

● A thread (sometimes called a lightweight
process) is a single sequential execution
stream within a process

● A thread shares with other threads:
n Address space, program code
n Global variables, heap

n OS resources (files, I/O devices)

● A thread has its own:
n Registers, Program Counter (PC)

n Stack, Stack Pointer (SP)

4 Spring 2001, Lecture 09

Processes vs. Threads

n A thread is bound to a particular process

● A process may contain multiple threads of
control inside it

● Threads can block, create children, etc.

n All of the threads in a process:

● Share address space, program code,
global variables, heap, and OS resources

● Execute concurrently (has its own
register, PC, SP, etc. values)

PC

PC

shared global data

thread A

process X's address space

stack stack

thread B

access to
printer

open file
"output.txt"

5 Spring 2001, Lecture 09

Why Threads?

n A process with multiple threads makes a
great server (e.g., printer server):

● Have one server process, many “worker”
threads — if one thread blocks (e.g., on a
read), others can still continue executing

● Threads can share common data; don’t
need to use inter-process communication

● Can take advantage of multiprocessors

n Threads are cheap!

● Cheap to create — only need a stack and
storage for registers

● Use very little resources — don’t need
new address space, global data, program
code, or OS resources

● Context switches are fast — only have to
save / restore PC, SP, and registers

n But… no protection between threads!
6 Spring 2001, Lecture 09

What Kinds of Programs Can Be
Multithreaded?

n Good programs to multithread:

● Server which needs to process multiple
requests simultaneously

● Programs with multiple independent tasks
(debugger needs to run and monitor
program, keep its GUI active, and display
an interactive data inspector and dynamic
call grapher)

● Repetitive numerical tasks — break large
problem, such as weather prediction,
down into small pieces and assign each
piece to a separate thread

n Programs difficult to multithread:

● Programs that don’t require any
multiprocessing (99% of all programs)

● Programs that require multiple processes
(maybe one needs to run as root)

7 Spring 2001, Lecture 09

Using Threads in a Server

n Dispatcher-worker model

● Dispatcher thread receives all requests,
hands each to an idle worker thread,
worker thread processes request

● Worker threads are either created
dynamically, or a fixed-size pool of
workers is created when the server starts

n Team model

● All threads are equals; each thread
processes incoming requests on its own

● Good for handling multiple types of
requests within a single server

n Pipeline model

● First thread partially processes request,
then hands it off to second thread, which
processes some more, then hands it off
to third thread, etc.

8 Spring 2001, Lecture 09

The “Bank” Analogy

n Multiple tellers perform the same job —
handling deposits, withdrawals, etc.

● Customers wait in a queue for next
available teller, go to whomever is free
(one teller is the same as any other)

n Multiple officers perform other jobs —
opening accounts, wiring money, etc.

n Bank has physical resources — desks,
chairs, vault, teller stations, etc. — all
tellers and officers share those resources

n If customer base increases, it’s easy to
add more tellers

● If one teller gets tied up handling a
difficult customer, other tellers can
continue processing customers

● It’s much harder to build a new bank

9 Spring 2001, Lecture 09

User-Level Threads

n User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

✔ Doesn’t require modification to the OS

✔ Simple representation — each thread is
represented simply by a PC, registers,
stack, and a small control block, all stored
in the user process’ address space

✔ Simple management — creating a new
thread, switching between threads, and
synchronization between threads can all
be done without intervention of the kernel

✔ Fast — thread switching is not much
more expensive than a procedure call

✔ Flexible — CPU scheduling (among those
threads) can be customized to suit the
needs of the algorithm

10 Spring 2001, Lecture 09

User-Level Threads (cont.)

n User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

✘ Lack of coordination between threads and
OS kernel
n Process as a whole gets one time slice
n Same time slice, whether process has 1

thread or 1000 threads

n Also — up to each thread to relinquish
control to other threads in that process

✘ Requires non-blocking system calls (i.e.,
a multithreaded kernel)
n Otherwise, entire process will blocked in

the kernel, even if there are runnable
threads left in the process

✘ If one thread causes a page fault, the
entire process blocks

11 Spring 2001, Lecture 09

Kernel-Level Threads

n Kernel-level threads = kernel provides
system calls to create and manage
threads

✔ Kernel has full knowledge of all threads
n Scheduler may choose to give a process

with 10 threads more time than process
with only 1 thread

✔ Good for applications that frequently
block (e.g., server processes with
frequent interprocess communication)

✘ Slow — thread operations are 100s of
times slower than for user-level threads

✘ Significant overhead and increased
kernel complexity — kernel must manage
and schedule threads as well as
processes
n Requires a full thread control block (TCB)

for each thread

12 Spring 2001, Lecture 09

Two-Level Thread Model
(Digital UNIX, Solaris, IRIX, HP-UX)

n User-level threads for user processes

● “Lightweight process” (LWP) serves as a
“virtual CPU” where user threads can run

n Kernel-level threads for use by kernel

● One for each LWP

● Others perform tasks not related to LWPs

n OS supports multiprocessor systems

task 1 task 2 task 3 user-level
thread

lightweight
process

kernel
thread

kernel

CPU CPU CPU CPU

13 Spring 2001, Lecture 09

Two-Level Thread Model
(cont.)

n Process is called a “task”, and contains
user-level threads and LWPs

● A set of user-level threads can be
multiplexed over one or more LWPs

● It’s up to the process/task to schedule
user-level threads onto LWPs

● If a user-level thread blocks, the LWP and
its associated kernel thread continue

n The OS only schedules kernel threads

● If a kernel thread blocks, all its LWPs and
user-level threads block

n A set of kernel-level threads may be
multiplexed over a set of processors

● Good for multiprocessors

● Other kernel-level threads can be pinned
to a specific processor

