Mutual Exclusion
in a Distributed Environment (Review)

m Mutual exclusion

¢ Centralized algorithms
m Central physical clock
m Central coordinator

¢ Distributed algorithms
m Time-based event ordering
— Lamport’s algorithm (logical clocks)
— Ricart & Agrawala’s algorithm (" ")
— Suzuki & Kasimi’s algorithm (broadcast)
m Token passing
— Le Lann’s token-ring algorithm (logical ring)
— Raymond’s tree algorithm (logical tree)
m Sharing K identical resources
— Raymond’s extension to Ricart &
Agrawala’s time-based algorithm

e Atomic transactions (later in course)

m Related — self-stabilizing algorithms,
election, agreement, deadlock

Spring 2001, Lecture 14

Chang and Roberts’ Ring Algorithm
(1979)

m Threads are arranged in a logical ring

o Every thread is initially a non-participant

m The election:

¢ A thread begins an election by
m Marking itself as a participant

m Sending an election message (containing
its identifier) to its neighbor

¢ When a thread receives an election
message, it compares the identifier that
arrived in the message to its own:
m If the arrived identifier is greater, then it:
— If itis not a participant, it:
» Marks itself as a participant
— Forwards the message to its neighbor
m If the arrived identifier is smaller:
— If itis not a participant, it:
» Marks itself as a participant

» Substitutes its own identifier in the
election message and sends it on

— If it is already a participant, it does nothing

Spring 2001, Lecture 14

Chang and Roberts’ Ring Algorithm
(cont.)

m The election:

¢ When a thread receives an election
message, it compares...:

m If the arrived identifier is that of the
receiving thread, then its identifier is the
largest, so it becomes the coordinator

— It marks itself as a non-participant again,

— It sends an elected message to its
neighbor, announcing the results of the
election and its identity

o When a thread receives an elected
message, it
m Marks itself as a non-participant, and
m Forwards the message to its neighbor

m Evaluation:

¢ 3N-1 messages in worst case

m N-1 election messages to reach
immediate neighbor in wrong direction, N
election messages to elect it, then N
elected messages to announce result

Spring 2001, Lecture 14

Chang and Roberts’ Ring Algorithm
(cont.)

Nonparticipant ~ Nonparticipant Participant Participant

—®

electionl election4

e]
@ C election4 C

Participant Nonparticipant Participant Participant

®7

Participant Participant Nonparticipant Nonparticipant

@ elected4

—®

election4 elected4 elected4
é @ elected
Participant Participant Nonparticipant ~ Nonparticipant

Spring 2001, Lecture 14

Suzuki and Kasami’'s Broadcast
Algorithm (1985)

m Overview:

e If a thread wants to enter the critical
section, and it does not have the token, it
broadcasts a request message to all
other sites in the token’s request set

e The thread that has the token will then
send it to the requesting thread

m However, if it's in the critical section, it
gets to finish before sending the token

¢ A thread holding the token can
continuously enter the critical section until
the token is requested

e Request vector at thread i :

m RN;[A] contains the largest sequence
number received from thread kin a
request message

e Token consists of vector and a queue:

m LN[K] contains the sequence number of
the latest executed request from thread k

m Q is the queue of requesting thread

Spring 2001, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

m Requesting the critical section (CS):

e When a thread / wants to enter the CS, if
it does not have the token, it:
m Increments its sequence number sn and
its request vector RN; [/] to RN; [/]+1

m Sends a request message containing new
snto all threads in that CS’s request set

e When a thread k receives the request
message, it:
m Sets RN, []] to MAX(RN, [, sn received)
— If sn < RN, [{], the message is outdated

m If thread k has the token and is not in the
CS (i.e., is not using it),
and if RN, []] == LN[/]+1 (indicating an
outstanding request)
it sends the token to thread i

m Executing the CS:

o Athread enters the CS when it has
acquired the token

Spring 2001, Lecture 14

Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

m Releasing the CS:

e When a thread /jleaves the CS, it:
m Sets LN[/] of the token equal to RN; [/]

— Indicates that its request RN; [{] has been
executed

m For every thread kwhose ID is not in the
token queue Q, it appends its ID to Q if
RN, [{ == LN[K+1

— Indicates that thread k has an outstanding
request

m If the token queue Q is nonempty after this
update, it deletes the thread ID at the
head of Q and sends the token to that
thread

— Gives priority to others’ requests
— Otherwise, it keeps the token

m Evaluation:

e 0to N messages required to enter CS
m No messages if thread holds the token
m Otherwise N-1 requests, 1 reply

7 Spring 2001, Lecture 14

Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

to get into the CS

SN
RN @ Thread 0 decides it wants

SN
SN @ RN[o]o[o]
RN[o[o]o] @
Token
LN
o IT]
SN Thread 0 updates its SN
RN o and request vector RN, and
sends its new SN to others
SN
SN RN[1]o]o]
RN[1]o]o0]

Threads 1 and 2 update
their RNs with new SN

LN mn received from Thread 0.
Thread 1 has the token,
but is not currently using it,
so it sends it to Thread 0.

Token

HE

Spring 2001, Lecture 14

Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

Thread 0 now has the token,
and is actively using it, when

LN requests come in from Thread

1, then Thread 2.

Q D] Thread 0 doesn't do
anything with those
requests yet, but it
updates its SN.

Token

SN
SN RN|[1
Snnp

When Thread 0 leaves CS, it
updates LN to indicate that

LN the request has been satisfied.

Then it adds Threads

Q 1 and 2 to the token

queue Q. Finally, it deletes
Thread 1 from the head of

o ®
RN Q and sends it the token.

Token

SN
SN @ RN
RN ©
9 Spring 2001, Lecture 14

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

SN

RN[1]1]1] O

SN
SN @ RN[1]1]1]
[T

Thread 1 now has the token,
Token

and can enter the CS.

LN When it finishes, it will update

LN and send the token to

Q Thread 2 (after adding

any new requests to the end of
the token queue Q).

10 Spring 2001, Lecture 14

Token-Ring Algorithm
(Le Lann, 1977 ?)

m Processes are arranged in a logical ring

m At start, process 0 is given a token

e Token circulates around the ring in a fixed
direction via point-to-point messages

e When a process acquires the token, it
has the right to enter the critical section

m After exiting CS, it passes the token on

m Evaluation:
e N-1 messages required to enter CS
¢ Not difficult to add new processes to ring

o With unidirectional ring, mutual exclusion
is fair, and no process starves

[l Not very fault-tolerant
L] Difficult to detect when token is lost

[l Doesn’t guarantee “happened-before”
order of entry into critical section

11 Spring 2001, Lecture 14

Raymond’s Tree Algorithm
(1989)

O,

T2 T3

efefege

e Threads are arranged as a logical tree

m Edges are directed toward the thread that
holds the token (called the “holder”, initially
the root of tree)

m Overview:

e Each thread has:

m A variable holder that points to its neighbor
on the directed path toward the holder of
the token

m A FIFO queue called request g that holds
its requests for the token, as well as any
requests from neighbors that have
requested but haven't received the token

— If request_q is non-empty, that implies the
node has already sent the request at the
head of its queue toward the holder

12 Spring 2001, Lecture 14

Raymond’s Tree Algorithm
(cont.)

m Requesting the critical section (CS):

¢ When a thread wants to enter the CS, but
it does not have the token, it:
m Adds its request to its request g

m If its request_q was empty before the
addition, it sends a request message
along the directed path toward the holder

— If the request_q was not empty, it's
already made a request, and has to wait
e When a thread in the path between the
requesting thread and the holder receives
the request message, it
m < same as above >

e When the holder receives a request
message, it
m Sends the token (in a message) toward
the requesting thread

m Sets its holder variable to point toward that
thread (toward the new holder)

13 Spring 2001, Lecture 14

Raymond’s Tree Algorithm
(cont.)

m Requesting the CS (cont.):

e When a thread in the path between the
holder and the requesting thread receives
the token, it

m Deletes the top entry (the most current
requesting thread) from its request _q

m Sends the token toward the thread
referenced by the deleted entry, and sets
its holder variable to point toward that
thread

m If its request_q is not empty after this
deletion, it sends a request message
along the directed path toward the new
holder (pointed to by the updated holder
variable)

m Executing the CS:

e Athread can enter the CS when it
receives the token and its own entry is at
the top of its request_q

m It deletes the top entry from the request_gq,
and enters the CS

14 Spring 2001, Lecture 14

Raymond’s Tree Algorithm
(cont.)

m Releasing the CS:

¢ When a thread leaves the CS

m If its request_q is not empty (meaning a
thread has requested the token from it), it:
— Deletes the top entry from its request_gq
— Sends the token toward the thread
referenced by the deleted entry, and sets
its holder variable to point toward that
thread
m If its request_q is not empty after this
deletion (meaning more than one thread
has requested the token from it), it sends
a request message along the directed
path toward the new holder (pointed to by
the updated holder variable)

m Evaluation:

[0 On average, O(log N) messages required
to enter CS

m Average distance between any two nodes
in a tree with N nodes is O(log N)

15 Spring 2001, Lecture 14

Raymond’s Tree Algorithm

(cont.)
T1 T1
T2 3 T2 req4 3
req4
10 cfd?)
T4 75 Te 17 T4 75 T 17
T1 T1
T2 , lok4 T3 T2 ,}> T3

0,
g § =S

T4 T5 T6 T7

T1

-y
gy

enters CS

16 Spring 2001, Lecture 14

Raymond’s Tree Algorithm
(cont.)

T1

T2 T3

f
reg4
- of

T4 T5 T6 T7

T2
req
tok4

T5

-Tz

d
T4 T5

17

Tl

T2 req4 T3

-&m{

T1
T2 tok4 T3

-6 oxe

T7

T7

enters CS

Spring 2001, Lecture 14

