
1 Spring 2001, Lecture 15

Deadlock Conditions

n These 4 conditions are necessary and
sufficient for deadlock to occur:

● Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

● No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

● Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

● Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

2 Spring 2001, Lecture 15

Resource-Allocation Graph

n The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

● 2 kinds of nodes:
n Boxes — represent resources

– Instances of the resource are represented
as dots within the box

n Circles — represent processes

● 2 kinds of (directed) edges:
n Request edge — from process to resource

— indicates the process has requested
the resource, and is waiting to acquire it

n Assignment edge — from resource
instance to process — indicates the
process is holding the resource instance

● When a request is made, a request edge
is added
n When request is fulfilled, the request edge

is transformed into an assignment edge

n When process releases the resource, the
assignment edge is deleted

3 Spring 2001, Lecture 15

Interpreting a RAG
With Single Resource Instances

n If the graph does not contain a cycle,
then no deadlock exists

n If the graph does contain a cycle,
then a deadlock does exist

n With single resource instances,
a cycle is a necessary and sufficient
condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

4 Spring 2001, Lecture 15

Interpreting a RAG
With Multiple Resource Instances

n If the graph does not contain a cycle,
then no deadlock exists

n If the graph does contain a cycle,
then a deadlock may exist

n With multiple resource instances,
a cycle is a necessary (but not
sufficient) condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

5 Spring 2001, Lecture 15

Interpreting a RAG With
Multiple Resource Instances (cont.)

n If the graph does contain a knot (and a
cycle), then a deadlock does exist

n If the graph does not contain a knot,
then a deadlock does not exist

n With multiple resource instances,
a knot is a sufficient condition for
deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

6 Spring 2001, Lecture 15

Dealing with Deadlock

n The Ostrich Approach — stick your head
in the sand and ignore the problem

● Often used in centralized systems!

● Maybe also be a good solution for
distributed systems in many situations

n Deadlock avoidance — consider each
resource request, and only fulfill those
that will not lead to deadlock

● Stay in a safe state — a state with no
deadlock where resource requests can be
granted in some order such that all
processes will complete

✘ A bad solution for centralized systems,
even worse in distributed systems
n Must know resource requirements of all

processes in advance

n Resource request set is known and fixed,
resources are known and fixed

n Complex analysis for every request

7 Spring 2001, Lecture 15

Dealing with Deadlock
(cont.)

n Deadlock prevention — eliminate one of
the 4 deadlock conditions

● Occasionally used in centralized systems!

● Maybe also be a good solution for
distributed systems in some situations

● We’ll come back to this later

n Deadlock detection and recovery —
detect, then break the deadlock

● Not too hard for single resource
instances, harder for multiple resource
instances

✘ More difficult when state is distributed

✔ Can detect concurrently w/ other activities

á In distributed systems — assume only
one non-sharable resource of each type

8 Spring 2001, Lecture 15

Deadlock Detection
in a Distributed Environment

n Centralized algorithms

● Coordinator maintains global WFG and
searches it for cycles

● Ho and Ramamoorthy’s two-phase and
one-phase algorithms

n Distributed algorithms

● Global WFG, with responsibility for
detection spread over many sites

● Obermarck’s path-pushing

● Chandy, Misra, and Haas’s edge-chasing

n Hierarchical algorithms

● Hierarchical organization, site detects
deadlocks involving only its descendants

● Menasce and Muntz’s algorithm

● Ho and Ramamoorthy’s algorithm

9 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Simple Algorithms)

n First Algorithm

● A central coordinator maintains a global
wait-for graph (WFG) for the system
n When appropriate, it checks the WFG for

cycles (for single resource instances, a
cycle implies deadlock)

n WFG is resource-allocation graph minus
resources; shows that a process is waiting
for a resource held by another process

● All sites request and release resources
(even local resources) by sending request
and release messages to the coordinator
n When coordinator receives a request, it

– updates the global WFG
– checks for deadlocks
– grants the request if no deadlock results

n When coordinator receives a release, it
– updates the global WFG

✘ Large communication overhead,
coordinator is a performance bottleneck
and single point of failure, etc.

10 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Example Using Simple Algorithms)

n Cycle in global WFG ⇒ deadlock

n No cycle in global WFG ⇒ no deadlock

p1

p5

p2

p3

site A

p2

p3

p4

site B

p1

p5

p2

p3

coordinator

p4

p1

p2

site A

p1

p3

site B

p1

p2 p3

coordinator

11 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Simple Algorithms) (cont.)

n Second Algorithm

● A central coordinator maintains a global
wait-for graph (WFG) for the system
n Individual sites also maintain local WFGs

for local processes and resources

n Global WFG is an approximation of the
total state of the system

● When should the coordinator update the
WFG and try to detect deadlocks?

1.Whenever a new edge is inserted or
removed in a local WFG

– Site informs coordinator via a message
– Global WFG can be slightly out-of-date

2.Periodically, when a number of changes
have been made to WFG

– Site sends several changes at once

– Global WFG can be more out-of-date

3.Whenever it needs to detect deadlock

● After deadlock is detected, coordinator
selects a “victim”, and tells all the sites,
which take the appropriate action

12 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Problem of False Deadlock)

n Consider this system state:

● Now assume process p2 releases
resource p1 is waiting on

● Slightly thereafter, process p2 requests
resource p3 is holding

● However, first message reaches
coordinator after second message

● The global WFG now has a false cycle,
which leads to a report of false deadlock

n Lamport’s algorithm can append logical
clock values to each message and avoid
this problem, although at the cost of
many more messages (details in text)

p1

p2

site A

p1

p3

site B

p1

p2 p3

coordinator

13 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Ho and Ramamoorthy, 1982)

n Two-phase algorithm:

● Every site maintains a status table,
containing status of all local processes
n Resources held, resources waiting on

● Periodically, coordinator requests all
status tables, builds a WFG, and
searches it for cycles
n No cycles ⇒ no deadlock

n If cycle is found, coordinator again
requests all status tables, again builds a
WFG, but this time uses only those edges
common to both sets of status tables

● Rationale was that by using information
from two consecutive reports, coordinator
would get a consistent view of the state
n However, it was later shown that a

deadlock in this WFG does not imply a
deadlock exists

n So, the HR-two-phase algorithm may
reduce the possibility of reporting false
deadlocks, but doesn’t eliminate it

14 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Ho and Ramamoorthy) (cont.)

n One-phase algorithm:

● Every site maintains two status tables
n Resource status table keeps track of

processes that are holding or requesting
resources at that site

n Process status table keeps track of
resources requested or held by processes
at that site

● Periodically, coordinator requests all
status tables, builds a WFG using only
information in both a resource and
process table, and searches it for cycles

● Rationale was that this eliminates
inconsistency caused by network delay
n Message in transit will have entry at one

site, not yet at the other

4The HR-one-phase algorithm does not
report false deadlocks

● Compared to two-phase algorithm:
4Faster, less messages

8More storage (2 tables), bigger messages

