Deadlock Conditions

m These 4 conditions are necessary and
sufficient for deadlock to occur:

e Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

e No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

e Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

e Circular wait — there must exist a set of
waiting processes such that PO is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, ... Pn-1is
waiting for a resource held by Pn, and Pn
Is waiting for a resource held PO

Spring 2001, Lecture 15

Resource-Allocation Graph

m The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

e 2 kinds of nodes:

m Boxes — represent resources
— Instances of the resource are represented
as dots within the box

m Circles — represent processes

e 2 kinds of (directed) edges:

m Request edge — from process to resource
— indicates the process has requested
the resource, and is waiting to acquire it

m Assignment edge — from resource
instance to process — indicates the
process is holding the resource instance

e When a request is made, a request edge
is added
m When request is fulfilled, the request edge
is transformed into an assignment edge

m When process releases the resource, the
assignment edge is deleted

Spring 2001, Lecture 15

Interpreting a RAG
With Single Resource Instances

m If the graph does not contain a cycle,
then no deadlock exists

rl r2
ENEEEN
& @
(o | [e]
] 4

m If the graph does contain a cycle,
then a deadlock does exist

o] [a]
() ()
N e

m With single resource instances,
acycleis anecessary and sufficient
condition for deadlock

3 Spring 2001, Lecture 15

Interpreting a RAG
With Multiple Resource Instances

m If the graph does not contain a cycle,
then no deadlock exists

rl r2

|\or3(| 0

4

m If the graph does contain a cycle,
then a deadlock may exist

rl

KN
G
|\or30/ |o:o|

m With multiple resource instances,
acycleis anecessary (but not
sufficient) condition for deadlock

4 Spring 2001, Lecture 15

Interpreting a RAG With
Multiple Resource Instances (cont.)

m If the graph does contain a knot (and a
cycle), then a deadlock does exist

ENEEN

m If the graph does not contain a knot,

then a deadlock does not exist
r r2

N
|

o

r

4

m With multiple resource instances,
a knot is a sufficient condition for
deadlock

Spring 2001, Lecture 15

Dealing with Deadlock

m The Ostrich Approach — stick your head
in the sand and ignore the problem

e Often used in centralized systems!

e Maybe also be a good solution for
distributed systems in many situations

m Deadlock avoidance — consider each
resource request, and only fulfill those
that will not lead to deadlock

e Stay in a safe state — a state with no
deadlock where resource requests can be
granted in some order such that all
processes will complete

[] A bad solution for centralized systems,
even worse in distributed systems
m Must know resource requirements of all
processes in advance

m Resource request set is known and fixed,
resources are known and fixed

m Complex analysis for every request

Spring 2001, Lecture 15

Dealing with Deadlock
(cont.)

m Deadlock prevention — eliminate one of
the 4 deadlock conditions

e Occasionally used in centralized systems!

e Maybe also be a good solution for
distributed systems in some situations

o We'll come back to this later

m Deadlock detection and recovery —
detect, then break the deadlock

¢ Not too hard for single resource
instances, harder for multiple resource
instances

L1 More difficult when state is distributed

[J Can detect concurrently w/ other activities

= |n distributed systems — assume only
one non-sharable resource of each type

7 Spring 2001, Lecture 15

Deadlock Detection
in a Distributed Environment

m Centralized algorithms

¢ Coordinator maintains global WFG and
searches it for cycles

e Ho and Ramamoorthy’s two-phase and
one-phase algorithms

m Distributed algorithms

¢ Global WFG, with responsibility for
detection spread over many sites

e Obermarck’s path-pushing

e Chandy, Misra, and Haas’s edge-chasing

m Hierarchical algorithms

¢ Hierarchical organization, site detects
deadlocks involving only its descendants

¢ Menasce and Muntz’s algorithm

¢ Ho and Ramamoorthy’s algorithm

8 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Simple Algorithms)

m First Algorithm

¢ A central coordinator maintains a global
wait-for graph (WFG) for the system

m When appropriate, it checks the WFG for
cycles (for single resource instances, a
cycle implies deadlock)

m WFG is resource-allocation graph minus
resources; shows that a process is waiting
for a resource held by another process

¢ All sites request and release resources
(even local resources) by sending request
and release messages to the coordinator
m When coordinator receives a request, it
— updates the global WFG
— checks for deadlocks
— grants the request if no deadlock results
m When coordinator receives a release, it
— updates the global WFG

[0 Large communication overhead,
coordinator is a performance bottleneck
and single point of failure, etc.

9 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Example Using Simple Algorithms)

m Cycle in global WFG [J deadlock

site A site B
coordinator

m No cycle in global WFG 0O no deadlock

0] [N

site A coordinator site B

10 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Simple Algorithms) (cont.)

m Second Algorithm

¢ A central coordinator maintains a global
wait-for graph (WFG) for the system
m Individual sites also maintain local WFGs
for local processes and resources

m Global WFG is an approximation of the
total state of the system

e When should the coordinator update the
WFG and try to detect deadlocks?
1.Whenever a new edge is inserted or
removed in a local WFG
— Site informs coordinator via a message
— Global WFG can be slightly out-of-date
2.Periodically, when a number of changes
have been made to WFG
— Site sends several changes at once
— Global WFG can be more out-of-date
3.Whenever it needs to detect deadlock

o After deadlock is detected, coordinator
selects a “victim”, and tells all the sites,
which take the appropriate action

11 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Problem of False Deadlock)

m Consider this system state:

0] e

site A coordinator site B

e Now assume process p2 releases
resource pl is waiting on

o Slightly thereafter, process p2 requests
resource p3 is holding

e However, first message reaches
coordinator after second message

e The global WFG now has a false cycle,
which leads to a report of false deadlock

m Lamport’s algorithm can append logical
clock values to each message and avoid
this problem, although at the cost of
many more messages (details in text)

12 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Ho and Ramamoorthy, 1982)

m Two-phase algorithm:

¢ Every site maintains a status table,
containing status of all local processes

m Resources held, resources waiting on

¢ Periodically, coordinator requests all
status tables, builds a WFG, and
searches it for cycles
m No cycles O no deadlock
m If cycle is found, coordinator again
requests all status tables, again builds a
WFG, but this time uses only those edges
common to both sets of status tables

o Rationale was that by using information
from two consecutive reports, coordinator
would get a consistent view of the state

m However, it was later shown that a
deadlock in this WFG does not imply a
deadlock exists

m So, the HR-two-phase algorithm may
reduce the possibility of reporting false
deadlocks, but doesn’t eliminate it

13 Spring 2001, Lecture 15

Centralized Deadlock Detection
(Ho and Ramamoorthy) (cont.)

m One-phase algorithm:

¢ Every site maintains two status tables

m Resource status table keeps track of
processes that are holding or requesting
resources at that site

m Process status table keeps track of
resources requested or held by processes
at that site

e Periodically, coordinator requests all
status tables, builds a WFG using only
information in both a resource and
process table, and searches it for cycles

o Rationale was that this eliminates
inconsistency caused by network delay

m Message in transit will have entry at one
site, not yet at the other

v The HR-one-phase algorithm does not
report false deadlocks

e Compared to two-phase algorithm:
v/ Faster, less messages
X More storage (2 tables), bigger messages..

14 pring ,

