Deadlock Conditions

m These 4 conditions are necessary and
sufficient for deadlock to occur:

e Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

e No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

e Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

e Circular wait — there must exist a set of
waiting processes such that PO is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, ... Pn-1is
waiting for a resource held by Pn, and Pn
Is waiting for a resource held PO
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Resource-Allocation Graph

m The deadlock conditions can be modeled
using a directed graph called a resource-
allocation graph (RAG)

e 2 kinds of nodes:

m Boxes — represent resources
— Instances of the resource are represented
as dots within the box

m Circles — represent processes

e 2 kinds of (directed) edges:

m Request edge — from process to resource
— indicates the process has requested
the resource, and is waiting to acquire it

m Assignment edge — from resource
instance to process — indicates the
process is holding the resource instance

e When a request is made, a request edge
is added
m When request is fulfilled, the request edge
is transformed into an assignment edge

m When process releases the resource, the
assignment edge is deleted
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Interpreting a RAG
With Single Resource Instances

m If the graph does not contain a cycle,
then no deadlock exists
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m If the graph does contain a cycle,
then a deadlock does exist
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m With single resource instances,
acycleis anecessary and sufficient
condition for deadlock
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Interpreting a RAG
With Multiple Resource Instances

m If the graph does not contain a cycle,
then no deadlock exists
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m If the graph does contain a cycle,
then a deadlock may exist
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m With multiple resource instances,
acycleis anecessary (but not
sufficient) condition for deadlock
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Interpreting a RAG With
Multiple Resource Instances (cont.)

m If the graph does contain a knot (and a
cycle), then a deadlock does exist
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m If the graph does not contain a knot,

then a deadlock does not exist
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m With multiple resource instances,
a knot is a sufficient condition for
deadlock
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Dealing with Deadlock

m The Ostrich Approach — stick your head
in the sand and ignore the problem

e Often used in centralized systems!

e Maybe also be a good solution for
distributed systems in many situations

m Deadlock avoidance — consider each
resource request, and only fulfill those
that will not lead to deadlock

e Stay in a safe state — a state with no
deadlock where resource requests can be
granted in some order such that all
processes will complete

[] A bad solution for centralized systems,
even worse in distributed systems
m Must know resource requirements of all
processes in advance

m Resource request set is known and fixed,
resources are known and fixed

m Complex analysis for every request
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Dealing with Deadlock
(cont.)

m Deadlock prevention — eliminate one of
the 4 deadlock conditions

e Occasionally used in centralized systems!

e Maybe also be a good solution for
distributed systems in some situations

o We'll come back to this later

m Deadlock detection and recovery —
detect, then break the deadlock

¢ Not too hard for single resource
instances, harder for multiple resource
instances

L1 More difficult when state is distributed

[J Can detect concurrently w/ other activities

= |n distributed systems — assume only
one non-sharable resource of each type
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Deadlock Detection
in a Distributed Environment

m Centralized algorithms

¢ Coordinator maintains global WFG and
searches it for cycles

e Ho and Ramamoorthy’s two-phase and
one-phase algorithms

m Distributed algorithms

¢ Global WFG, with responsibility for
detection spread over many sites

e Obermarck’s path-pushing

e Chandy, Misra, and Haas’s edge-chasing

m Hierarchical algorithms

¢ Hierarchical organization, site detects
deadlocks involving only its descendants

¢ Menasce and Muntz’s algorithm

¢ Ho and Ramamoorthy’s algorithm
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Centralized Deadlock Detection
(Simple Algorithms)

m First Algorithm

¢ A central coordinator maintains a global
wait-for graph (WFG) for the system

m When appropriate, it checks the WFG for
cycles (for single resource instances, a
cycle implies deadlock)

m WFG is resource-allocation graph minus
resources; shows that a process is waiting
for a resource held by another process

¢ All sites request and release resources
(even local resources) by sending request
and release messages to the coordinator
m When coordinator receives a request, it
— updates the global WFG
— checks for deadlocks
— grants the request if no deadlock results
m When coordinator receives a release, it
— updates the global WFG

[0 Large communication overhead,
coordinator is a performance bottleneck
and single point of failure, etc.
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Centralized Deadlock Detection
(Example Using Simple Algorithms)

m Cycle in global WFG [J deadlock

site A site B
coordinator

m No cycle in global WFG 0O no deadlock

0] [N

site A coordinator site B
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Centralized Deadlock Detection
(Simple Algorithms) (cont.)

m Second Algorithm

¢ A central coordinator maintains a global
wait-for graph (WFG) for the system
m Individual sites also maintain local WFGs
for local processes and resources

m Global WFG is an approximation of the
total state of the system

e When should the coordinator update the
WFG and try to detect deadlocks?
1.Whenever a new edge is inserted or
removed in a local WFG
— Site informs coordinator via a message
— Global WFG can be slightly out-of-date
2.Periodically, when a number of changes
have been made to WFG
— Site sends several changes at once
— Global WFG can be more out-of-date
3.Whenever it needs to detect deadlock

o After deadlock is detected, coordinator
selects a “victim”, and tells all the sites,
which take the appropriate action
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Centralized Deadlock Detection
(Problem of False Deadlock)

m Consider this system state:

0] e

site A coordinator site B

e Now assume process p2 releases
resource pl is waiting on

o Slightly thereafter, process p2 requests
resource p3 is holding

e However, first message reaches
coordinator after second message

e The global WFG now has a false cycle,
which leads to a report of false deadlock

m Lamport’s algorithm can append logical
clock values to each message and avoid
this problem, although at the cost of
many more messages (details in text)
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Centralized Deadlock Detection
(Ho and Ramamoorthy, 1982)

m Two-phase algorithm:

¢ Every site maintains a status table,
containing status of all local processes

m Resources held, resources waiting on

¢ Periodically, coordinator requests all
status tables, builds a WFG, and
searches it for cycles
m No cycles O no deadlock
m If cycle is found, coordinator again
requests all status tables, again builds a
WFG, but this time uses only those edges
common to both sets of status tables

o Rationale was that by using information
from two consecutive reports, coordinator
would get a consistent view of the state

m However, it was later shown that a
deadlock in this WFG does not imply a
deadlock exists

m So, the HR-two-phase algorithm may
reduce the possibility of reporting false
deadlocks, but doesn’t eliminate it
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Centralized Deadlock Detection
(Ho and Ramamoorthy) (cont.)

m One-phase algorithm:

¢ Every site maintains two status tables

m Resource status table keeps track of
processes that are holding or requesting
resources at that site

m Process status table keeps track of
resources requested or held by processes
at that site

e Periodically, coordinator requests all
status tables, builds a WFG using only
information in both a resource and
process table, and searches it for cycles

o Rationale was that this eliminates
inconsistency caused by network delay

m Message in transit will have entry at one
site, not yet at the other

v The HR-one-phase algorithm does not
report false deadlocks

e Compared to two-phase algorithm:
v/ Faster, less messages
X More storage (2 tables), bigger messages..
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