
1 Spring 2001, Lecture 17

Dealing with Deadlock
(Review)

n The Ostrich Approach — stick your head
in the sand and ignore the problem

n Deadlock avoidance — consider
resources and requests, and only fulfill
requests that will not lead to deadlock

✘ Too hard for centralized systems, even
harder in distributed systems!!

n Deadlock prevention — eliminate one of
the 4 deadlock conditions

n Deadlock detection and recovery —
detect, then break the deadlock

✘ More difficult when state is distributed

● Must avoid reporting false deadlock

á In distributed systems, we typically
assume single resource instances

2 Spring 2001, Lecture 17

Deadlock Conditions
(Review)

n These 4 conditions are necessary and
sufficient for deadlock to occur:

● Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

● No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

● Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

● Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

3 Spring 2001, Lecture 17

Deadlock Prevention

n Basic idea: ensure that one of the 4
conditions for deadlock can not hold

n Mutual exclusion — if one process
holds a resource, other processes
requesting that resource must wait until
the process releases it

● Hard to avoid mutual exclusion for non-
sharable resources
n Printer & other I/O devices
n Files

n Network connections

● However, many resources are sharable,
so deadlock can be avoided for them
n Read-only files (binaries, perhaps)

n Most files in your account

● For printer, avoid mutual exclusion
through spooling — then process won’t
have to wait on physical printer

4 Spring 2001, Lecture 17

Deadlock Prevention
(cont.)

n Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

● To avoid, impose a total order on all
resources, and require process to request
resource in that order
n Order: disk drive, printer, CDROM

n Process A requests disk drive, then printer
n Process B requests disk drive, then printer

n Process B does not request printer, then
disk drive, which could lead to deadlock

● Order should be in the logical sequence
that the resources are usually acquired
n Allow process to release all resources,

and start request sequence over

n Or force process to request total number
of each resource in a single request

5 Spring 2001, Lecture 17

Deadlock Prevention
(cont.)

n No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

● To avoid, allow preemption
n If process A requests resources that aren’t

available, see who holds those resources
– If the holder (process B) is waiting on

additional resources, preempt the
resource requested by process A

– Otherwise, process A has to wait

» While waiting, some of its current
resources may be preempted

» Can only wake up when it acquires
the new resources plus any
preempted resources

n If a process requests a resource that can
not be allocated to it, all resources held by
that process are preempted

– Can only wake up when it can acquire all
the requested resources

n Only works for resources whose state can
be saved/restored (memory, not printer)

6 Spring 2001, Lecture 17

Deadlock Prevention
(cont.)

n Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

● To avoid, ensure that whenever a
process requests a resource, it doesn’t
hold any other resources
n Request all resources (at once) at

beginning of process execution
– Process which loops forever?

n Request all resources (at once) at any
point in the program

n To get a new resource, release all current
resources, then try to acquire new one
plus old ones all at once

● Difficult to know what to request in
advance

● Wasteful; ties up resources and reduces
resource utilization

● Starvation is possible

7 Spring 2001, Lecture 17

Atomic Transactions

n A transaction (also called an atomic
transaction) is a set of operations that
perform some logically complete task
(from the field of databases)

● Transactions must be prevented from
interfering with one another

● If a transaction terminates normally, its
effects are permanent; otherwise it has
no effect

n Example transaction involving a client
and three bank accounts A, B, and C:

Withdraw(A, 100);
Deposit(B, 100);

Withdraw(C, 200);

Deposit(B, 200);

● Result is $100 transferred from A to B,
and $200 transferred from C to

8 Spring 2001, Lecture 17

ACID Properties of a Transaction
(Härder and Reuter, 1983)

n Atomicity — a transaction is either
performed in its entirety or not at all; it
appears to an outside observer as a
single, instantaneous, indivisible action

n Consistency — a transaction must take
the database from one consistent state to
another; invariants that should always
hold will hold after the transaction

n Isolated (Serializable) — if two
transactions run at the same time, the
result must look as if they ran
sequentially in some arbitrary order; a
transaction’s updates must not be visible
to other transactions until it commits

n Durable — once a transaction commits,
its result is permanent (must never be
lost)

9 Spring 2001, Lecture 17

Other Properties and Implications
of Atomic Transactions

n Recoverability — the changes due to all
completed transactions must be available
in permanent storage (write to permanent
storage before reporting the transaction
complete)

● If a server halts unexpectedly, when it
wakes up again it aborts any
uncommitted transactions, and recovers
data values committed by recent
transactions

n Server is responsible for synchronizing
operations to ensure that the isolation /
serializability requirement is met

● Simple but unacceptable — perform each
transaction sequentially

● Harder but generally required —
interleave operations of various
transactions, while ensuring that isolation
holds

10 Spring 2001, Lecture 17

Transaction Primitives

n Begin transaction — start a transaction

n Operations

● Read — read data from a file or object

● Write — write data to a file or object

● Others appropriate to the type of
transaction…

n Commit and end transaction — save
updates and terminate the transaction

● Changes are permanently recorded; all
future transactions will see the results of
the changes made during the transaction

n Abort and end transaction — restore
system state and terminate the
transaction

● None of the changes are visible in future
transactions

11 Spring 2001, Lecture 17

Implementing Transactions, and
Recovery from an Aborted Transaction

n Can’t just update objects

● Doesn’t enforce atomicity

● State can’t be restored on abort

● Multiple transactions will not be isolated

n When a process begins a transaction,
give it a private workspace

● Contains copies of all files and objects it
needs

● Changes are made to private copies

● Commit changes originals, abort leaves
originals untouched

● Optimizations:
n Don’t copy objects read but not written

n Copy only the file index (location of blocks
on disk) and blocks actually written

12 Spring 2001, Lecture 17

Implementing Transactions, Recovery
(cont.)

n Record changes in a writeahead log

● Record in the writeahead log (“ahead” of
the change)
n Which transaction is making the change

n Which file and block is being changed

n Old and new values

● Immediate update:
n Operations record in log as described

above, then update the actual data

n If transaction aborts, must use log to
rollback — restore original state

● Deferred update:
n Operations update local workspace

n Commit writes record to log as described
above, then updates the actual data

n If transaction aborts, data remains
unchanged

● Log can also be used to recover from a
crash (compare log to actual values to
determine state at crash)

13 Spring 2001, Lecture 17

Need for Concurrency Control

n Concurrency control — allow two or more
transactions to proceed concurrently,
while preserving serializability (isolation)

n Lost update problem:

● Account A = $100, B = $200, C = $300
n Transaction T transfers $4 from A to B

n Transaction U transfers $3 from C to B

n Should end A = $96, B = $207, C = $297

● U’s update of B is lost:

Transaction T Transaction U
bal=read(A) $100
write(A,bal–4) $96

bal=read(C) $300
write(C,bal–3) $297

bal=read(B) $200
bal=read(B) $200
write(B,bal+3) $203

write(B,bal+4) $204

14 Spring 2001, Lecture 17

Need for Concurrency Control (cont.)

n Inconsistent retrievals problem:

● Account A = $200, B = $200
n Transaction T transfers $100 from A to B

n Transaction U computes sum of all
accounts in the bank

n Should end A = $100, B = $300,
total = $400+

● U’s retrievals are inconsistent because T
has not completed the transfer when the
sum is calculated:

Transaction T Transaction U (part)
bal=read(A) $200
write(A,bal–100) $100

bal=read(A) $100
bal+=read(B) $300

bal=read(B) $200
write(B,bal+100) $300

15 Spring 2001, Lecture 17

Concurrency Control —
Enforcing Serializability

n Lost update problem:

● Not interleaving updates:

Transaction T Transaction U
bal=read(A) $100
write(A,bal–4) $96

bal=read(C) $300
write(C,bal–3) $297

bal=read(B) $200
write(B,bal+4) $204

bal=read(B) $204
write(B,bal+3) $207

n Inconsistent retrievals problem:

● Not interleaving transfer retrieval:

Transaction T Transaction U (part)
bal=read(A) $200
write(A,bal–100) $100
bal=read(B) $200
write(B,bal+100) $300

bal=read(A) $100
bal+=read(B) $400

16 Spring 2001, Lecture 17

Serializability

n A serializable schedule has the same
result as one with no interleaving at all

● Can we prove a schedule is serializable?

● A conflict occurs when:
n Both transactions access the same

variable, and

n At least one of those accesses is a write

● When all conflicts happen in the same
order (T before U or U before T), then the
schedule is serializable; otherwise not.

n In general, with > 2 transactions, we can
build a conflict serializability graph

● Each transaction is a node of the graph

● For each conflict, draw an arc from the
earlier transaction to the later transaction.

● If this graph has a cycle, then the
schedule is not serializable

17 Spring 2001, Lecture 17

Serializability Testing

n Draw a downward (forward in time) arrow for
each conflict. If all arrows point the same
way, then the schedule is serializable

n If at least one arrow is pointing leftward
and another arrow is pointing rightward,
the schedule is not serializable

Transaction T Transaction U
bal=read(A)
write(A,bal–4)

bal=read(C)
write(C,bal–3)

bal=read(B)
write(B,bal+4)

bal=read(B)
write(B,bal+3)

Transaction T Transaction U
bal=read(A)
write(A,bal–4)

bal=read(C)
write(C,bal–3)
bal=read(B)

bal=read(B)
write(B,bal+4)

write(B,bal+3)

