
1 Spring 2001, Lecture 18

ACID Properties of a Transaction
(Review)

n Atomicity — a transaction is either
performed in its entirety or not at all; it
appears to an outside observer as a
single, instantaneous, indivisible action

n Consistency — a transaction must take
the database from one consistent state to
another; invariants that should always
hold will hold after the transaction

n Isolated (Serializable) — if two
transactions run at the same time, the
result must look as if they ran
sequentially in some arbitrary order; a
transaction’s updates must not be visible
to other transactions until it commits

n Durable — once a transaction commits,
its result is permanent (must never be
lost)

2 Spring 2001, Lecture 18

Need for Concurrency Control
(Review)

n Lost update problem:

Transaction T Transaction U
bal=read(A) $100
write(A,bal–4) $96

bal=read(C) $300
write(C,bal–3) $297

bal=read(B) $200
bal=read(B) $200
write(B,bal+3) $203

write(B,bal+4) $204

n Inconsistent retrievals problem:

Transaction T Transaction U (part)
bal=read(A) $200
write(A,bal–100) $100

bal=read(A) $100
bal+=read(B) $300

bal=read(B) $200
write(B,bal+100) $300

3 Spring 2001, Lecture 18

Why do These Problems Occur?

n Conflicts between transactions cause
this inconsistency due to the order in
which the operations are executed

● If one transaction reads a data object,
and another reads that same data object,
there is not a conflict

● If one transaction reads a data object,
and another writes that same data object,
there is a conflict

● If one transaction writes a data object,
and another writes that same data object,
there is a conflict

n It’s up to some concurrency control
mechanism to allow interleaving, but
keep the database / file consistent

● Should allow high degree of concurrency

● Should prevent intermediate values from
being visible to other transactions

4 Spring 2001, Lecture 18

Issues in Transactions and
Concurrency Control

n Centralized transactions

● Concurrency control
n Locking algorithms

– Static locking

– Two-phase locking (2PL)
– Strict two-phase locking (strict 2PL)

n Optimistic concurrency control

n Timestamp ordering

● Handling deadlock for locking algorithms
n Deadlock detection
n Deadlock prevention

– Lock timeouts
– Transaction timestamps

n Distributed transactions

● Simple distributed vs. nested

● Atomic commit protocols
n One-phase
n Two-phase

5 Spring 2001, Lecture 18

Concurrency Control Using Locks
(Eswaran, Gray, Lorie, and Traiger, 1976)

n A well-formed transaction must:

● Lock a data object before accessing it

● Unlocks the data object before it
completes (commit / abort)

● Example:
lock B; read B; update B; unlock B

n Note that being well-formed is not
sufficient to guarantee consistency

● Well-formed doesn’t say anything about
when a transaction should lock / unlock
n Lock sometime after transaction begins,

but before object is accessed

n Unlock after finished with object, but
before transaction completes

● Additional constraints are needed to
specify when a lock can be acquired, and
when it can be released
n These constraints are expressed as

locking algorithms
6 Spring 2001, Lecture 18

Static Locking

n A transaction acquires locks on all the
data objects it needs (at a single point in
time) before executing any action on the
data objects

● Usually when transaction begins

n After using the data objects, it releases
all of its locks at once

● Usually when transactions completes,
else intermediate values will be visible

n Evaluation:

✔ Simple, yet preserves consistency
(intermediate values are not visible to
other transactions)

✘ Requires a priori knowledge of all the
data objects to be accessed

✘ Wasteful of resources, severely limits the
concurrency of the transactions

7 Spring 2001, Lecture 18

Two-Phase Locking (2PL)

n A transaction acquires a lock when it
needs to access a data object. If it
releases the lock after that access, but
before the transactions ends, data could
become visible to other transactions

➥ (Consistency constraint) A transaction
cannot request a lock on any data object
after it has unlocked a data object

n The algorithm has two phases:

● Growing phase — transaction requests
locks, but doesn’t release any locks
n The stage of a transaction when it holds

locks on all the needed data objects is
called the lock point

● Shrinking phase — transaction releases
locks, but doesn’t request any more locks

n Increases concurrency over static locking
because locks are held for less time

8 Spring 2001, Lecture 18

Two-Phase Locking (2PL)
(cont.)

n Problems with two-phase locking (2PL):

● Prone to cascaded roll-back
n With 2PL, after the transaction has

released some of its locks, yet before it
has committed the transaction, those
intermediate results become visible

n When a transaction is rolled back, all
modified data objects are restored

n What if another transaction reads those
intermediate results, and this transaction
later aborts?

– All transactions that have read these data
objects must also be rolled back (even if
they’ve already completed!) — this is
called cascaded roll-back

● Prone to deadlock
n A transaction can request a lock on a data

object while holding locks on other data
object, so a circular wait can result

n Resolved (after detecting deadlock) by:
– Abort deadlocked transaction, restore all

modified data objects, release all its locks,
and withdraw all pending lock requests

9 Spring 2001, Lecture 18

Improvements to Two-Phase Locking

n Strict two-phase locking (strict 2PL)

● A transaction holds all its locks until it
completes, when it commits and releases
all of its locks in a single atomic action
n Similar for an abort

✘ Reduces concurrency (transactions hold
locks longer than in 2PL) — almost as
bad as strict locking!

✘ Doesn’t avoid deadlock

✔ Avoids cascaded roll-backs

● Most common locking algorithm

n Improvements to these algorithms

● Two kinds of locks:
n Read lock — other readers are permitted,

writers are excluded
n Write lock — exclusive access

● Reduce granularity where possible (more
concurrency, also more locks)

10 Spring 2001, Lecture 18

Deadlock Detection / Prevention
for Locking Algorithms

n Deadlock detection

● Lock manager is responsible for detection
n It looks for cycles in its WFG

n If it finds a cycle, it must select and abort a
transaction

n Deadlock prevention

● Lock all items when transaction starts
n Overly restrictive, reduces concurrency

n May not be possible to predict accesses

● Request locks in predefined order
n May cause premature locking, which

reduces concurrency

● Lock timeouts (enables preemption)
n Each lock is invulnerable for a limited

period, and vulnerable afterwards

n If a transaction wants to access a data
object protected by a vulnerable lock, the
lock is broken and the transaction holding
it is aborted

11 Spring 2001, Lecture 18

Deadlock Detection / Prevention
 for Locking Algorithms (cont.)

n Deadlock prevention (cont.)

● Transaction timestamps
n Each transaction is assigned a unique

timestamp when it starts (logical clock,
using Lamport’s algorithm)

n If a transaction needs to access a data
object that is locked by another
transaction, the timestamps of the two
transactions are compared

– Older transaction (smaller timestamp)
generally have priority

– Wait-for edges are only allowed from older
to younger, which prevents cycles

n Wait-die: (aborts one)
– If older transaction wants something held

by younger transaction, it waits
– If younger transaction wants something

held by older transaction, it must die

n Wound-wait: (preempts resource)
– If older transaction wants something held

by younger transaction, it preempts it
– If younger transaction wants something

held by older transaction, it waits
12 Spring 2001, Lecture 18

Optimistic Concurrency Control
(Kung and Robinson, 1981)

n Disadvantages of locking:

● High lock maintenance overhead
n Even read-only queries must lock

● Possible deadlock and cascading aborts
n Deadlock prevention reduces concurrency

n Holding locks until the end to prevent
cascading aborts reduces concurrency

n Alternative — optimism

● Likelihood of conflict is low, so just ignore
the problem for the most part
n Allow transactions to proceed as if there is

no possibility of conflict

n Use private workspaces

● Validation before closing — if none of the
data objects were modified by other
transactions, then the transaction can
commit, otherwise it aborts

● No deadlock, no cascading aborts

13 Spring 2001, Lecture 18

Timestamp Ordering

n Each operation is validated when it is
carried out

● If it can not be validated, then the entire
transaction is aborted

n Basic timestamp ordering algorithm:

● Each transaction is assigned a unique
timestamp when it starts (logical clock,
using Lamport’s algorithm)

● A transaction’s request to write a data
item is valid only if that data item was last
read and written by earlier transactions

● A transaction’s request to read a data
item is valid only if that data item was last
written by earlier transactions

● If a transaction is aborted and restarts, it
gets a new timestamp

● No deadlock, no cascading aborts

14 Spring 2001, Lecture 18

Comments on the Various
Concurrency Control Methods

n Pessimistic

● Two-phase locking and timestamp
ordering are both pessimistic — detect
conflicts as each data item is accessed

● Static vs. dynamic ordering
n Timestamp ordering decides serialization

order statically — when each transaction
starts

n Two-phase locking decides serialization
order dynamically — according to the
order in which the data items are
accessed

n Effect of conflict:

● Timestamp ordering aborts immediately

● Two-phase locking makes transaction
wait

● Optimistic concurrency lets all
transactions proceed, but later aborts
some (possibly after long execution)

15 Spring 2001, Lecture 18

Distributed Transactions

n A distributed transaction invokes
operations in several different servers

● Simple distributed transaction
n Client makes requests to more than one

server

n Each server carries out the client’s
requests without involvement by others

● Nested distributed transaction
n Client makes requests to more than one

server
n Some of those servers make requests of

yet other servers to carry out the client’s
request, and some of those servers may…

n Example:
– Client A tells server M to transfer $4 from

account A to C, and $3 from B to D
– A is at server X, B is at server Y, and C

and D are at server Z
– M tells server X to withdraw $4 from A

– M tells server Y to withdraw $3 from B
– M tells server Z to deposit $4 into C, and

$3 into D
16 Spring 2001, Lecture 18

Atomic Commit Protocols

n Distributed transactions are still required
to be completed atomically

n First server involved in the distributed
transaction becomes the coordinator

● Coordinator is responsible for committing
or aborting the transaction

● All transactions involved know the identity
of the coordinator

n One-phase atomic commit protocol

● Transaction ends when coordinator
requests that it be committed or aborted

● Coordinator tells all the servers in the
transaction to commit / abort, and keeps
repeating that request until all of them
acknowledge that they have carried it out

● Coordinator can commit / abort, but
individual servers can not

17 Spring 2001, Lecture 18

Atomic Commit Protocols (cont.)

n Two-phase atomic commit protocol

● Allows any server to abort its part of the
transaction; atomicity then requires the
entire transaction to be aborted

● Phase 1: (voting phase)
n Coordinator asks each worker if it can

commit its transaction

n Worker replies to coordinator; if its answer
is no, the worker immediately aborts

● Phase 2: (completion phase)
n Coordinator collects the votes (including

its own)
– If there are no failures, and all votes are

yes, the coordinator sends a commit
request to each worker

– Otherwise, the coordinator sends an abort
request to all workers that voted yes

n Workers that voted yes wait for a commit
or abort message, act accordingly, and in
the case of commit send a
have_committed message afterwards

