
1 Spring 2001, Lecture 20

File Access & Semantics of Sharing

n Overlapping / interleaving data access

● When data is replicated in space to
increase concurrency, coherency control
is needed to keep the copies coherent

● When data operations are spread out and
interleaved in time, concurrency control is
needed to prevent interference

● Remote access — no local data

● Cache access — small part kept locally

● Dl/ul access — whole file is downloaded
for local access, then uploaded

time / space
remote
access

cache
access

down/up load
access

simple RW
no true
sharing

coherency
control

coherency
control

transaction
concurrency

control
concurrency

control
concurrency

control

session
not

applicable
not

applicable
ignore
sharing

2 Spring 2001, Lecture 20

Semantics of Sharing (cont.)

n Grouping file operations in different time
intervals:

● Simple RW — each read & write
operation is an independent request

● Transaction — groups of reads and writes
treated as an atomic action

● Session — sequence of transactions and
simple RW operations, plus additional
semantics

n Three different semantic models:

● UNIX semantics — result of a write goes
immediately to the file, so reads always
return the “latest” value

● Transaction semantics — writes go to
local storage and go to file when and if
the transaction commits

● Session semantics — similar, writes go to
file when the session is closed

3 Spring 2001, Lecture 20

Cache Location

n No caching — all files on server’s disk

✔ Simple, no local storage needed

✘ Expensive transfers

n Cache files in server’s memory

✔ Easy, transparent to clients

✘ Still involves a network access

n Cache files on client’s local disk

✔ Plenty of space, reliable

✘ Faster than network, slower than memory

n Cache files in client’s memory

● The usual solution (either in each
process’s address space, or in the kernel)

✔ Fast, permits diskless workstations

✘ Data may be lost in a crash
4 Spring 2001, Lecture 20

Cache Modification Policy

n Cache modification (writing) policy
decides when a modified (dirty) cache
block should be flushed to the server

n Write-through — immediately flush the
new value to server (& keep in cache)

✔ No problems with consistency

✔ Maximum reliability during crashes

✘ Doesn’t take advantage of caching during
writes (only during reads)

n Write-back (delayed-write) — flush the
new value to server after some delay

✔ Fast — write need only hit the cache
before the process continues

✔ Can reduce disk writes since the process
may repeatedly write the same location

✘ Unreliable — if machine crashes,
unwritten data is lost

5 Spring 2001, Lecture 20

Cache Modification Policy (cont.)

n Variations on write-back (when are the
new values flushed to the server?)

● Write-on-close — flush new value to the
server only when the file is closed
4Can reduce disk writes, particularly when

the file is open for a long time

8Unreliable — if machine crashes,
unwritten data is lost
8May make the process wait on the file

close

● Write-periodically — flush new value to
the server at periodic intervals (maybe 30
seconds)
4Can only lose writes in last period

6 Spring 2001, Lecture 20

Cache Validation

n A client must decide whether or not a
locally cached copy of data is consistent
with the master copy

n Client-initiated validation:

● Client initiates validity checks

● Client contacts the server and asks if its
copy is consistent with the server’s copy
n At every access, or

n After a given interval, or

n Only on file open

● Server could enforce single-writer,
multiple-reader semantics, but to do so
n It would have to store client state

(expensive)
n Clients would have to specify access type

(read / write) on open

✘ High frequency of validity checks may
mitigate the benefits of caching

7 Spring 2001, Lecture 20

Cache Validation (cont.)

n Server-initiated validation:

● Server records the parts of each file that
each client caches

● Server detects potential conflicts if two or
more clients cache the same file

● Concurrency control for handling conflicts:
n Session semantics — writes are only visible

in sessions starting later (not to processes
which have file open now)

– When a client closes a file that it has
modified, the server notifies the other clients
that their cached copy is invalid, and they
should discard it

» If another client has the file open,
discard it when its session is over

n UNIX semantics — writes are immediately
visible to others

– Clients specify the type of access they want
when they open a file, so if two clients want
to write the same file for writing, that file is
not cached

✘ Significant overhead at the server
8 Spring 2001, Lecture 20

Stateful vs. Stateless

n Stateful server — server maintains state
information for each client for each file

● Connection-oriented (open file, read /
write file, close file)

✔ Enables server optimizations like read-
ahead (prefetching) and file locking

✘ Difficult to recover state after a crash

n Stateless server — server does not
maintain state information for each client

● Each request is self-contained (file,
position, access)
n Connectionless (open and close are

implied)

✔ If server crashes, client can simply keep
retransmitting requests until it recovers

✘ No server optimizations like above

✘ File operations must be idempotent

9 Spring 2001, Lecture 20

Caching in NFS

n Traditional UNIX

● Caches file blocks, directories, and file
attributes

● Uses read-ahead (prefetching), and
delayed-write (flushes every 30 seconds)

n NFS servers

● Same as in UNIX, except server’s write
operations perform write-through
n Otherwise, failure of server might result in

undetected loss of data by clients

n NFS clients

● Caches results of read, write, getattr,
lookup, and readdir operations

● Possible inconsistency problems
n Writes by one client do not cause an

immediate update of other clients’ caches

10 Spring 2001, Lecture 20

Caching in NFS (cont.)

n NFS clients (cont.)

● File reads
n When a client caches one or more blocks

from a file, it also caches a timestamp
indicating the time when the file was last
modified on the server

n Whenever a file is opened, and the server
is contacted to fetch a new block from the
file, a validation check is performed

– Client requests last modification time from
server, and compares that time to its
cached timestamp

– If modification time is more recent, all
cached blocks from that file are invalidated

– Blocks are assumed to valid for next 3
seconds (30 seconds for directories)

● File writes
n When a cached page is modified, it is

marked as dirty, and is flushed when the
file is closed, or at the next periodic flush

● Now two sources of inconsistency: delay
after validation, delay until flush

11 Spring 2001, Lecture 20

Caching in Andrew

n When a remote file is accessed, the
server sends the entire file to the client

● The entire file is then stored in a disk
cache on the client computer
n Cache is big enough to store several

hundred files

n Implements session semantics

● Files are cached when opened

● Modified files are flushed to the server
when they are closed

● Writes may not be immediately visible to
other processes

n When client caches a file, server records
that fact — it has a callback on the file

● When a client modifies and closes a file,
other clients lose their callback, and are
notified by server that their copy is invalid

12 Spring 2001, Lecture 20

How Can Andrew Perform Well?

n Most file accesses are to files that are
infrequently updated, or are accessed by
only a single user, so the cached copy
will remain valid for a long time

n Local cache can be big — maybe 100
MB — which is probably sufficient for one
user’s working set of files

n Typical UNIX workloads:

● Files are small, most are less than 10kB

● Read operations are 6 times more
common than write operations

● Sequential access is common, while
random access is rare

● Most files are read and written by only
one user; if a file shared, usually only one
user modifies it

● Files are referenced in bursts

