
1 Spring 2001, Lecture 21

Scheduling of Jobs / Processes in a
Distributed System

n Scheduling in a centralized system:

● Resource = CPU

● Consumer = process

● Scheduling = assign each process to
some period of time on the CPU

n Scheduling in a distributed system:

● Resource = processor / workstation

● Consumer = computation task / process

● Scheduling = assign each process to
some processor

n Goal: distribute processes among the
processors so as to optimize some cost
function (e.g., response time, utilization)

● Load distribution — which tasks should
be moved, and when?

● Process migration — how to move them
2 Spring 2001, Lecture 21

Example Load Distribution Algorithm

n All processors constantly monitor their
load — the number of active processes

n When a processor’s load goes above
some particular threshold, it becomes a
“sender”

n The new process that caused it to
become a sender is selected for transfer

n The sender polls the other processes,
one by one, until it finds a “receiver” — a
process with a load below some
particular threshold

n The selected process is frozen,
transferred (migrated) from the sender to
the receiver, and restarted there

3 Spring 2001, Lecture 21

Measuring Load

n Number of processes, resource demands
on those processes, instruction mixes,
architecture and speed of processor

n But some are swapped out, dead, etc.
n Remaining service time is unknown

n Length of ready or I/O queues

● Correlates well with response time

● Used extensively

● Unfortunately, queue length doesn’t really
correlate with CPU utilization, particularly
in an interactive environment
n One solution is to use a background

process to monitor CPU utilization (but…
this is expensive!)

n Must also account for time to transfer a
task to a new processor

4 Spring 2001, Lecture 21

Advantages of Load Distribution

n Reduce response time for processes

● Move to lightly loaded node

n Speed up individual jobs

● Go to faster node

● Split up process across multiple nodes

n Gain higher throughput

● Balance system load

● Mix I/O & CPU bound processes

n Utilize resources effectively

● Move to node where resources reside

n Reduce network traffic

● Cluster related processes on same node

5 Spring 2001, Lecture 21

Desirable Features of
a Good Load Distribution Method

n No a priori knowledge about processes

n Dynamic in nature — change with
system load, allow process migration

n Quick decision-making capability

n Balanced system performance and
overhead — don’t reduce system
performance collecting state information

n Stability — don’t migrate processes so
often that no work gets done (better
definition later)

n Scalability — works on both small and
large networks

n Fault tolerance — recover if one or more
processors crashes

6 Spring 2001, Lecture 21

Load Distribution vs.
Process Migration

n Load distribution — deciding which tasks
to move from one processor to another,
and when to move them

● Selection of process to migrate

● Selection of destination node

n Process migration is the relocation of a
process from its current location (source
node) to another node (destination node)

● Preemptive — after process starts

● Non-preemptive — before process starts

● Mechanics of process migration:
n Freeze process on source node

n Transfer address space and state of
process from source to destination node

n Restart process on destination node

n Forward messages sent to old processor
to new processor

7 Spring 2001, Lecture 21

Desirable Features of
a Good Process Migration Method

n Transparency

● Access to all objects from everywhere

● Location-independent system calls

n Minimal interference

● Minimize freeze time (stopped execution
while process is being transferred)

n Minimal residual dependencies

● Migrated process should not depend in
any way on source node, otherwise:
n Adds to load on source node

n Failure of source node could affect it

n Efficiency

● Keep inefficiency to a minimum
n Time to select process and destination
n Time required to migrate a process

n Cost of remote execution afterwards
8 Spring 2001, Lecture 21

Process Migration Mechanisms

n Freezing and restarting a process

● Freezing = execution suspended,
external interactions with process are
deferred

● Only an issue for preemptive transfers

● Before freezing, process must be blocked
n Blocked immediately

– If not executing a system call

– If executing a system call, but sleeping
and interruptable

n Blocking is delyed
– If executing a system call, but sleeping at

a non-interruptable priority — must delay
until system call is complete

● After blocking, wait for completion of fast
I/O operations, but don’t wait for
completion of slow I/O

● Keep track of files, switch to local files if
possible

● Keep same process ID after migration

9 Spring 2001, Lecture 21

Process Migration Mechanisms
(cont.)

n Transferring the address space & state

● Entire process state: register contents,
scheduling info, memory tables, I/O
states, process ID, file info, etc.
n Must stop execution during transfer

● Address space: code, data, stack, heap
n Transfer can take a long time!

n Can continue execution during transfer

● 3 alternatives in transfer:
n Total freeze

– Stop execution during addr. space transfer
– Possible long suspension in execution

n Pre-transfer
– Continue execution during address space

transfer, then freeze process and transfer
remaining modified pages

– Small freeze time = little interruption

n Transfer on reference
– Leave address space on source node,

only transfer pages when and if they are
referenced

10 Spring 2001, Lecture 21

Process Migration Mechanisms
(cont.)

n Message-forwarding

● 3 types of messages to forward
1.Messages received at source node after

execution has stopped there, but before
execution has started on destination

2. Messages received at source node after
execution has started on destination

3. Messages sent to process later

● Resending the message
n Return or drop type 1 & 2 messages,

hope sender will resend to new location
n Sender can do a “locate” operation to find

process at its new location

● Origin site mechanism
n Messages are sent to original source site,

which forwards them as necessary

● Link traversal mechanism
n Type 1 messages are part of migration

n Type 2 & 3 messages follow a link
(forwarding address) left behing

11 Spring 2001, Lecture 21

Process Migration in
Heterogeneous Systems

n Must translate data

● Big endian, little endian (bytes & words)

● ASCII, EBCDIC, etc.

● External data representation
n Use standard representation for transfer

● Sinha describes various techniques for
migrating the exponent and mantissa of
floating point numbers
n However, many systems now use the

IEEE floating point format, for consistency

n Single precision = 32 bits (1 sign, 8
exponent, 23 mantissa)

n Double precision = 64 bits (1 sign, 10
exponent, 53 mantissa)

n For details, see my Computer
Organization lecture on the subject

● Also have to handle signed-infinity and
signed-zero, if those values are
supported by one or both of the nodes

12 Spring 2001, Lecture 21

Classifying Load Distribution
Algorithms (Preview)

n How is the load redistributed?

● Reduce the chance of having one
processor is idle, but tasks contending for
service at another processor, by
transferring tasks to between processors

● Load balancing
n Tries to equalize the load at all processors

n Moves tasks more often than load sharing;
much more overhead

● Load sharing
n Tries to reduce the load on the heavily

loaded processors only
n Probably a better solution

n How is system state (load on each
processor) used?

n Can a task be transferred to another
processor once it starts executing?

