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Example algorithm that is
both stabilizing and robust

§ Robustness and stabilization - to approaches to
combat system faults

§ guarded command language review

§ alternating bit protocol ABP - robust but not
stabilizing

§ stabilizing ABP

§ stabilizing ring token token circulation algorithm
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Robust and stabilizing algorithms

§ An algorithm is robust (masking) if the correct operation of the
algorithm is ensured even at the presence of specified failures

§ the algorithm is stabilizing if it is able to eventually start working
correctly regardless of the initial state.

u stabilizing algorithm does not guarantee correct behavior
during recovery

u stabilizing algorithm is able to recover from faults regardless of
their nature (as soon as the influence of the failure stops)

§ an algorithm can mask certain kinds of failures and stabilize from
others

u for example: an algorithm may mask message loss and
stabilize from topology changes
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Guarded Command Language (GCL)
l *[ É] - execution repeats forever
l guardi - binary predicate on local vars,

     received messages, etc.;
l commandi - list of assignment state-

          ments;
command is executed when

corresponding guard is true;
guards are selected nondeter-

menistically,
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Advantages:

l GCL allows to easily reason about algorithms and their
executions: the program counter position is irrelevant or less
important;

l we donÕt have to consider execution starting in the middle of
guard or command (serializability property); 4

Alternating Bit Protocol
Objective:  transmit data reliably

from sender to receiver over
unreliable  channel

Invariant: no more than 2 msgs in
system, correct message carries
same number as ns
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problems:

multiple messages in channel not
allowed

timeout needs to be long
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Stabilizing
Alternating Bit Protocol

Invariant: numbers carried by
messages (and nr)
monotonically decrease and no
greater than ns
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program stabilized
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DijkstraÕs K-State Token
Circulation Algorithm
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¥guard evaluates to true - processor
has a privilege (token)

¥all processors evaluate their guards,
only one at a time changes state
(C-Daemon)

¥after the state change all
processors re-evaluate the guards

Objective: circulate a
single token among
processors

¥the system consists of a ring of K
processors (ids 0 through K-1)

¥each processor maintains a state
variable s; a processor can see the
state of itÕs left (smaller id) neighbor
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DijkstraÕs K-State Token
Circulation Algorithm
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4ρ changes state from l to l 
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simulation


