
1

Example algorithm that is
both stabilizing and robust

§ Robustness and stabilization - to approaches to
combat system faults

§ guarded command language review

§ alternating bit protocol ABP - robust but not
stabilizing

§ stabilizing ABP

§ stabilizing ring token token circulation algorithm

2

Robust and stabilizing algorithms

§ An algorithm is robust (masking) if the correct operation of the
algorithm is ensured even at the presence of specified failures

§ the algorithm is stabilizing if it is able to eventually start working
correctly regardless of the initial state.

u stabilizing algorithm does not guarantee correct behavior
during recovery

u stabilizing algorithm is able to recover from faults regardless of
their nature (as soon as the influence of the failure stops)

§ an algorithm can mask certain kinds of failures and stabilize from
others

u for example: an algorithm may mask message loss and
stabilize from topology changes

3

Guarded Command Language (GCL)
l *[É] - execution repeats forever
l guardi - binary predicate on local vars,

 received messages, etc.;
l commandi - list of assignment state-

 ments;
command is executed when

corresponding guard is true;
guards are selected nondeter-

menistically,
]

[]

[*

22

11

M

commandguard

commandguard

♦
♦

Advantages:

l GCL allows to easily reason about algorithms and their
executions: the program counter position is irrelevant or less
important;

l we donÕt have to consider execution starting in the middle of
guard or command (serializability property); 4

Alternating Bit Protocol
Objective: transmit data reliably

from sender to receiver over
unreliable channel

Invariant: no more than 2 msgs in
system, correct message carries
same number as ns

]
),(send

[]
),(send

():
:
thenif
)(receive

[*
process

nsmsdata
timeout

nsmsdata
getms
nsns

nsi
iack

p

♦

=
↓=

=
♦

]
)(send

)(
),(receive

[*
process

iack
mrput

imrdata

q

♦

p q
true)(,1mdata

true=ns
true)(ack

true=ns

false)2 ,(mdata

false=ns
?

problems:

multiple messages in channel not
allowed

timeout needs to be long

5

Stabilizing
Alternating Bit Protocol

Invariant: numbers carried by
messages (and nr)
monotonically decrease and no
greater than ns

]
)(send

:
)(
thenif

),(receive
[*
process

iack
inr

mrput
nri

imrdata

q

=

?
♦

]
),(send

[]
),(send

():
:
thenif
)(receive

[*
process

nsmsdata
timeout

nsmsdata
getms

nsns
nsi

iack

p

♦

=
+=

=
♦

1

p q

3)(ack
3=ns

6)(ack

4)1,(mdata

8=nr

p receives ack,
sends new message

6)(ack
4=ns

4)1,(mdata

8=nr

)42,(mdata

q receives m1, delivers,
sends ack

6)(ack
4=ns

4)(ack

4)2,(mdata

4=nr

p receives ack, ignores

4=ns
4)(ack

4)2,(mdata

4=nr

p receives ack,
sends new message

5=ns

4)2,(mdata

4=nr

5)3,(mdata

q receives m2, ignores,
sends ack

5=ns
4)(ack

5)3,(mdata

4=nr

program stabilized

6

DijkstraÕs K-State Token
Circulation Algorithm

]
mod)(:

[*
Kssss 00k0

0

1

Processor

1 +=♦= −

ρ

]
:

[*
)

11

0Processor

−− =♦?

<<(

iiii

i

ssss

Kiρ

¥guard evaluates to true - processor
has a privilege (token)

¥all processors evaluate their guards,
only one at a time changes state
(C-Daemon)

¥after the state change all
processors re-evaluate the guards

Objective: circulate a
single token among
processors

¥the system consists of a ring of K
processors (ids 0 through K-1)

¥each processor maintains a state
variable s; a processor can see the
state of itÕs left (smaller id) neighbor

7

DijkstraÕs K-State Token
Circulation Algorithm

]
mod)(:

[*
Kssss 00k0

0

1

Processor

1 +=♦= −

ρ

]
:

[*
)

11

0Processor

−− =♦?

<<(

iiii

i

ssss

Kiρ

states
l0 l1 l2

l3 l4

0ρ 1ρ

2ρ

3ρ

4ρ

tokentokens

4ρ changes state from l to l

token

4ρ changes state from l to l

token

3ρ changes state from l to l

token

0ρ changes state from l to l
0ρ changes state from l to l

tokens

2ρ changes state from l to l

tokens

simulation

