Example algorithm that is Robust and stabilizing algorithms
both stabilizing and robust

» An algorithm is robust (masking) if the correct operation of the
algorithm is ensured even at the presence of specified failures

= the algorithm is stabilizing if it is able to eventually start working
correctly regardless of the initial state.

« stabilizing algorithm does not guarantee correct behavior

= Robustness and stabilization - to approaches to
combat system faults

= guarded command language review

= alternating bit protocol ABP - robust but not during recovery
stabilizing o stabilizing algorithm is able to recover from faults regardless of
= stabilizing ABP their nature (as soon as the influence of the failure stops)
= stabilizing ring token token circulation algorithm » an algorithm can mask certain kinds of failures and stabilize from
others

+ for example: an algorithm may mask message loss and
stabilize from topology changes

Guarded Command Language (GCL) Alternating Bit Protocol

process p Objective: transmit data reliably
@ *[...] - execution repeats forever [. . from sender to receiver over

. ® gcuard, - binary predicate on local vars, receive ack(i) ¢ unreliable channel

[received messages, etc; = lthen Invariant: no more than 2 msgs in

: : ns =1 ns -

guardi ¢ command: @ command,- list O;Zii‘égnme”t state- ms := get() system, correct message carries

[lguard » ¢ command 2 command is executed Wh,en send data(ms,ns) same number as ns

' corresponding guard is true; []timeou e data mztfml@:e)

uards are selected nondeter-
] 9 menistically | send data(ms,ns) p q
Advantages: =
J process g ns = talec
o GCL allows to easily reason about algorithms and their | ack (true)
executions: the program counter position is irrelevant or less receive data(mr,i) ¢ problems:
important; put(mr) multiple messages in channel not
send ack(i) allowed

e we don’t have to consider execution starting in the middle of]
guard or command (serializability property); 3 timeout needs to be long 4

process p Stabilizing
Alternating Bit Protocol

receive ack(i) ¢
if i = ns then

ns == ns + 1 Invariant: numbers carried by
ms := get() messages (and nr)
send data(ms,ns) monotonically decrease and no
1l greater than ns
timeout ¢
send data(ms,ns)
] ddeadeda)i (inzs $)
process g q
% [_
receive data(mr,i) 4 =5 =4
if i ? nr then ack %k(qyck (4)
put(mr) receives ack,
| send ack(i) HESPRAS res.
sends ac 5

Dijkstra’s K-State Token
Circulation Algorithm

Objective: circulate a
single token among
processors

Processor po
[

s0o=sk-14 s0:=(so+1)modK
]

Processor p: (0<i<K)
[
Si?S8Si-16 Sii=Ssi-1

]

*the system consists of a ring of K
processors (ids 0 through K-1)

*each processor maintains a state
variable s; a processor can see the
state of it’s left (smaller id) neighbor

eguard evaluates to true - processor
has a privilege (token)

«all processors evaluate their guards,
only one at a time changes state
(C-Daemon)

-after the state change all

processors re-evaluate the guards
6

Dijkstra’s K-State Token
Circulation Algorithm

Processor po
[

so=sk-14 s0:=(so+1)modK
]

Processor pi: (0<i<K)
[
Si?Si-1¢ Sii=Si-1

]

states
o0 01 @2

@3 @4 . .
simulation 7

