
1 Spring 1999, Lecture 05

Communication Models in
Distributed Systems

n Peer-to-peer

● Producer / consumer

n Client / server

● Clients ask dedicated server to perform
some specific service

n Central coordinator (many-to-one)

● Nodes send information to coordinator;
coordinator makes decision

● Central point of failure

n Distributed consensus (one-to-many)

● Nodes send information to each other;
group as a whole reaches a consensus

● Large amount of communication required

2 Spring 1999, Lecture 05

The Producer-Consumer Problem

n One process is a producer of information;
another is a consumer of that information

n Processes communicate through a
bounded (fixed-size) circular buffer

var buffer: array[0..n-1] of items; /* circular array */
in = 0
out = 0

/* producer */ /* consumer */
repeat forever repeat forever

… while (in == out)
produce item nextp do nothing
… nextc = buffer[out]
while (in+1 mod n == out) out = out+1 mod n

do nothing …
buffer[in] = nextp consume item nextc
in = in+1 mod n …

end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6
n = 7

3 Spring 1999, Lecture 05

Message Passing using
Send & Receive

n Blocking send:

● send(destination-process, message)

● Sends a message to another process, then
blocks (i.e., gets suspended by OS) until
message is received and acknowledged

n Blocking receive:

● receive(source-process, message)

● Blocks until a message is received (may
be minutes, hours, …)

n Producer-Consumer problem:

/* producer */ /* consumer */
repeat forever repeat forever

… receive(producer,nextc)
produce item nextp …
… consume item nextc
send(consumer, nextp) …

end repeat end repeat

4 Spring 1999, Lecture 05

Non-blocking Send & Receive

n Non-blocking send:

● Sends, then goes on to next instruction
without waiting for an acknowledgment

● Advantage: sending process can execute
in parallel with message transmission

● Problem: must avoid modifying message
buffer until message has been received
(but how do you know?)

1.Copy message from user space to kernel
space, then let process continue

2.Keep message in user space, have kernel
send interrupt when message has been
received (difficult to program)

n Non-blocking receive:

● Receive returns with buffer, but doesn’t
know if there’s a message there or not
n Must poll or receive interrupt when

message is ready and process should
perform a receive (difficult to program)

5 Spring 1999, Lecture 05

Buffering

n Link may have some capacity that
determines the number of message that
can be temporarily queued in it

n Zero capacity: (queue of length 0)

● No place in link for messages to wait

● Sender must wait until receiver is ready to
receive the message
n Sender blocks, waits for receiver to say it’s

ready, then resends message

n Timeout mechanism is used to resend
message, wait for acknowledgment

n Single-message capacity:
 (queue of length 1)

● Simple method for synchronous
communication

● If receiver isn’t ready, message is
buffered

6 Spring 1999, Lecture 05

Buffering (cont.)

n Bounded capacity: (queue of length n)

● If receiver’s queue is not full, new
message is put on queue, and sender
can continue executing immediately

● If queue is full, either:
n Send must return an error (leaves error

handling up to programmer)

n Sender must block until space is available
in the queue (may result in deadlock)

n Unbounded capacity: (infinite queue)

● Sender can always continue

● Not possible in practice

7 Spring 1999, Lecture 05

Direct vs. Indirect Communication

n Direct communication — explicitly name
the process you’re communicating with

n send(destination-process, message)

n receive(source-process, message)

● Link is associated with exactly two
processes
n Between any two processes, there exists

at most one link

n The link may be unidirectional, but is
usually bidirectional

n Indirect communication — communicate
using mailboxes (owned by receiver)

n send(mailbox, message)

n receive(mailbox, message)

● Link is associated with two or more
processes that share a mailbox
n Between any two processes, there may be

a number of links

n The link may be either unidirectional or
bidirectional

8 Spring 1999, Lecture 05

Client / Server Model using
Message Passing

n Client / server model

● Server = process (or collection of
processes) that provides a service
n Example: name service, file service

● Client — process that uses the service

● Request / reply protocol:
n Client sends request message to server,

asking it to perform some service

n Server performs service, sends reply
message containing results or error code

client

request

reply

server

request

reply

kernelkernel

network

9 Spring 1999, Lecture 05

Failure Handling in
Client / Sever Communication

n Potential failures:

● Loss of request
n Server never performs request

● Loss of response message
n Client doesn’t know server performed

request

● Server may die or become unreachable
n Did server perform request or not?

n 3-message reliable protocol:

● Client sends request; blocks

● Server sends reply; blocks

● Client unblocks, sends acknowledgment;
server unblocks

n 2-message protocol:

● Client sends request; blocks

● Server sends reply; client unblocks
10 Spring 1999, Lecture 05

Semantics in Presence of Failure
(Client Can’t Locate Server, Lost Request)

n Client can’t locate server

● Reasons: server down, new version of
server code

● Can’t just return error code always

● Raise an exception (if supported)

n Lost request

● Start timer after issuing request
n If time expires, send request again

● No problem if request was really lost

client server
request

client server

client server
request

client server
response

?

11 Spring 1999, Lecture 05

Semantics in Presence of Failure
(Lost Request (cont.))

n Lost / delayed reply

● OK to retransmit request only if remote
procedure is idempotent (calling it
multiple times is same as calling it once)

● If not idempotent, be more conservative:

client server
request

client server

client server
request

client server
response

?

client server

client server
ping?

client server
reply lost → response

?

reply delayed → working,
 later get response

12 Spring 1999, Lecture 05

Semantics in Presence of Failure
(Error Recovery — Sequence Numbers)

n More general solution: attach a sequence
number to every request and reply

client server
request 17

client server

client server
request 17

client server
response 17

?

17

17

17

17

16

16

16

17

client server
request 17

client server

client server
request 17

client server
response 17

?

17

17

17

17

16

17

17

17

response 17

13 Spring 1999, Lecture 05

Semantics in Presence of Failure
(Server Crash)

n Possible scenarios
n Request arrives, server crashes

n Request arrives, request processed,
server crashes

n Request arrives, request processed,
reply sent, server crashes

● Desired response is different for each, but
neither client nor server knows what it is

n Three (unattractive) alternatives:

● Client keeps trying until it gets a response
n Action carried out at least once

● Client gives up and reports failure
n Action carried out at most once (but

maybe not at all)

● Whatever…
n No guarantees at all… easy to implement!

● Ideal (unachievable)
n Action carried out exactly once

