Classification of MIMD Architectures
(cont.)

m Multiprocessors (shared memaory)

e Any process can use usual load / store
operations to access any memory word

[J Simple communication between
processes — shared memory locations

[0 Synchronization is well-understood, uses
classical techniques (semaphores, etc.)

[l Complex hardware — bus becomes a
bottleneck with more than 10-20 CPUs

m Multicomputers (distributed memory)

e Each CPU has its own private memory
[0 Simple hardware with network connection

] Complex communication — processes
have to use message-passing, have to
deal with lost messages, blocking, etc.

e RPCs help, but aren’t perfect (no globals,
can’t pass large data structures, etc.)

Spring 1998, Lecture 08

UMA Multiprocessors

CPU CPU CPU
Memory

Cache Cache Cache

m Symmetric Multiprocessor (SMP)

e Multiple CPUs (2—30), one shared
physical memory, connected by a bus

m Caches must be kept consistent

e Each CPU has a “snooping” cache, which
“snoops” what’s happening on the bus
m On read hit, fetch data from local cache
m On read miss, fetch data from memory,
and store in local cache
— Same data may be in multiple caches
m (Write through) On write, store in memory
and local cache

— Other caches are snooping; if they have
that word they invalidate their cache entry

— After write completes, the memory is up-
to-date and the word is only in one cache

Spring 1998, Lecture 08

NUMA Multiprocessors

CPU Memory CPU Memory

I |
Bus Bus

LAN

m NUMA = NonUniform Memory Access

m NUMA multiprocessor
e Multiple CPUs, each with its own memory
e CPUs share a single virtual memory

e Accesses to local memory locations are
much faster (maybe 10x) than accesses
to remote memory locations

m No hardware caching, so it matters which
data is stored in which memory

o A reference to a remote page causes a
hardware page fault, which traps to the
OS, which decides whether or not to
move the page to the local machine

Spring 1998, Lecture 08

Distributed Shared Memory (DSM)
Overview

m Basic idea (Kai Li, 1986)

¢ Collection of workstations, connected by
a LAN, all sharing a single paged, virtual
address space

e Each page is present on exactly one
machine, and a reference to a local page
is done in the usual fashion

o A reference to a remote page causes a
hardware page fault, which traps to the
OS, which sends a message to the
remote machine to get the page; the
faulting instruction can then complete

[0 To programmer, DSM machine looks like
a conventional shared-memory machine

e Easy to modify old programs

[] Poor performance — lots of pages being
sent back and forth over the network

Spring 1998, Lecture 08

Comparison of
MIMD Shared-Memory Systems

Hardware-controlled caching Software-controlled caching

Managed by Managed by Managed by language
MMU os runtime system
Single- . Page- Shared- Object-
bus Switched | | NUMA | | based | |variable | | based
multi- ulti machine DSM DSM DSM
processor | | Processor
. Sequent Dash Cm* vy Munin Linda
Tightly Firefly Alewife Butterfly | Mirage | Midway | Orca Loosely
coupled coupled

Tranfer Cache Cache Page Page Data Object
unit block block structure

Remote access in hardware Remote access in software

Figure from Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

e SMP = single bus multiprocessor

m Hardware access to all of memory,
hardware caching of blocks

e NUMA

m Hardware access to all of memory,
software caching of pages

¢ Distributed Shared Memory (DSM)

m Software access to remote memory,
software caching of pages

5 Spring 1998, Lecture 08

Consistency Models

m Strict consistency (strongest model)

e Value returned by a read operation is
always the same as the value written by
the most recent write operation

m Works like a centralized memory system
m Writes become instantly available to all
m “Real time” order is preserved

¢ Not possible to implement

m Sequential consistency (Lamport 1979)

o All processes see all memory writes in
the same order (but not necessarily
“program order”)

m Commuting order of writes between
processes is allowed, so long as all
processes see the same ordering

— “Real time” order is not required

¢ Read operation may not return result of
most recent write operation!

m If order matters, use semaphores!

Spring 1998, Lecture 08

Consistency Models
(cont.)

m Causal consistency (Hutto &
Ahamad 1990)

e All processes see all causally-related
memory writes in the same order

m Commuting order of writes between
processes is allowed, so long as all
processes see the same ordering of
causally-related writes

m Two memory references are potentially
causally-related if the first one potentially
influences the second one

— Write a variable, then read that variable
— Write a variable, then write it again

¢ Disjoint writes can be pipelined to
improve memory system performance

e Must maintain a dependency graph to
keep track of which operations are
dependent on which other operations

7 Spring 1998, Lecture 08

Consistency Models
(cont.)

m Processor consistency (Goodman 1990)

o All processes see all writes from an
individual processor in program order,
and all writes to the same memory
location in the same order

¢ Disjoint writes, and writes by a single
processor, can be pipelined

m PRAM consistency (Lipton &
Sandberg 1988)

e All processes see all writes from an
individual processor in program order
m Writes from different processors can be
seen in any order
¢ PRAM = pipelined RAM

o Writes by a single processor can be
pipelined to improve performance;
processor doesn’t have to wait for one to
finish before starting another

Spring 1998, Lecture 08

Consistency Models
(cont.)

m Weak consistency (Dubois 1988)

e Sequential consistency applies only to a
synchronization accesses, not individual
memory accesses

m Synchronization accesses act as a barrier

m All previous writes must be completed
before a synch. access is performed

m All synch. accesses must be completed
before a new read / write access can start

m Normal memory accesses can be pipelined

m Release consistency
(Gharachorloo 1990)

e Sequential consistency applies only to lock
acquire and release operations

m Lock acquire — must acquire before
starting new reads / writes, but don’t have
to wait for previous writes to complete

m Lock release — must complete previous
writes before release, but don’t have to wait
to start new reads / writes

9 Spring 1998, Lecture 08

Comparison of Consistency Models

m Differ in restrictiveness, implementation
difficulty, ease of use, and performance

¢ Strict consistency — most restrictive, but
impossible to implement

e Sequential consistency — intuitive
semantics, but doesn’t allow much
concurrency

m Used in DSM systems

m Variation called relaxed memory is used in
commercial memory systems (allows
reads and writes to be reordered if they
access different memory locations)

e Causal, processor & PRAM consistency
— allow more concurrency, but have non-
intuitive semantics, and put extra burden
on the programmer (to avoid doing things
that require more consistency)

e Weak & release consistency — intuitive
semantics, but put extra burden on the
programmer

10 Spring 1998, Lecture 08

Implementing Sequential Consistency
in a Page-Based DSM

m Can a page move? ...be replicated?

m Nonreplicated, nonmigrating pages

¢ All requests for the page have to be sent
to the owner of the page

o Easy to enforce sequential consistency —
owner orders all access request

e NoO concurrency

m Nonreplicated, migrating pages

¢ All requests for the page have to be sent
to the owner of the page

e Each time a remote page is accessed, it
migrates to the processor that accessed it

o Easy to enforce sequential consistency —
only processes on that processor can
access the page

e NoO concurrency

11 Spring 1998, Lecture 08

Implementing Sequential Consistency
in a Page-Based DSM (cont.)

m Replicated, migrating pages

¢ All requests for the page have to be sent
to the owner of the page

e Each time a remote page is accessed, it's
copied to the processor that accessed it

¢ Multiple read operations can be done
concurrently

e Hard to enforce sequential consistency
—must invalidate (most common
approach) or update other copies of the
page during a write operation

m Replicated, nonmigrating pages
e Replicated at fixed locations

¢ All requests to the page have to be sent
to one of the owners of the page

¢ Hard to enforce sequential consistency
—must update other copies of the page
during a write operation

12 Spring 1998, Lecture 08

Granularity

m Page-based DSM
¢ Single page — simple to implement

e Multiple pages — take advantage of
locality of reference, amortize network
overhead over multiple pages

m Disadvantage — false sharing

m Shared-variable DSM

¢ Share only those variables that are need
by multiple processes

e Updating is easier, can avoid false
sharing, but puts more burden on the
programmer

m Object-based DSM

e Retrieve not only data, but entire object
— data, methods, etc.

e Have to heavily modify old programs

13 Spring 1998, Lecture 08

