
1 Spring 1998, Lecture 08

Classification of MIMD Architectures
(cont.)

n Multiprocessors (shared memory)

● Any process can use usual load / store
operations to access any memory word

✔ Simple communication between
processes — shared memory locations

✔ Synchronization is well-understood, uses
classical techniques (semaphores, etc.)

✘ Complex hardware — bus becomes a
bottleneck with more than 10-20 CPUs

n Multicomputers (distributed memory)

● Each CPU has its own private memory

✔ Simple hardware with network connection

✘ Complex communication — processes
have to use message-passing, have to
deal with lost messages, blocking, etc.

● RPCs help, but aren’t perfect (no globals,
can’t pass large data structures, etc.)

2 Spring 1998, Lecture 08

UMA Multiprocessors

n Symmetric Multiprocessor (SMP)

● Multiple CPUs (2–30), one shared
physical memory, connected by a bus

n Caches must be kept consistent

● Each CPU has a “snooping” cache, which
“snoops” what’s happening on the bus
n On read hit, fetch data from local cache
n On read miss, fetch data from memory,

and store in local cache
– Same data may be in multiple caches

n (Write through) On write, store in memory
and local cache

– Other caches are snooping; if they have
that word they invalidate their cache entry

– After write completes, the memory is up-
to-date and the word is only in one cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

3 Spring 1998, Lecture 08

NUMA Multiprocessors

n NUMA = NonUniform Memory Access

n NUMA multiprocessor

● Multiple CPUs, each with its own memory

● CPUs share a single virtual memory

● Accesses to local memory locations are
much faster (maybe 10x) than accesses
to remote memory locations

n No hardware caching, so it matters which
data is stored in which memory

● A reference to a remote page causes a
hardware page fault, which traps to the
OS, which decides whether or not to
move the page to the local machine

CPU Memory CPU Memory

Bus Bus

LAN

4 Spring 1998, Lecture 08

Distributed Shared Memory (DSM)
Overview

n Basic idea (Kai Li, 1986)

● Collection of workstations, connected by
a LAN, all sharing a single paged, virtual
address space

● Each page is present on exactly one
machine, and a reference to a local page
is done in the usual fashion

● A reference to a remote page causes a
hardware page fault, which traps to the
OS, which sends a message to the
remote machine to get the page; the
faulting instruction can then complete

✔ To programmer, DSM machine looks like
a conventional shared-memory machine

● Easy to modify old programs

✘ Poor performance — lots of pages being
sent back and forth over the network

5 Spring 1998, Lecture 08

Comparison of
MIMD Shared-Memory Systems

Figure from Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

● SMP = single bus multiprocessor
n Hardware access to all of memory,

hardware caching of blocks

● NUMA
n Hardware access to all of memory,

software caching of pages

● Distributed Shared Memory (DSM)
n Software access to remote memory,

software caching of pages

6 Spring 1998, Lecture 08

Consistency Models

n Strict consistency (strongest model)

● Value returned by a read operation is
always the same as the value written by
the most recent write operation
n Works like a centralized memory system

n Writes become instantly available to all
n “Real time” order is preserved

● Not possible to implement

n Sequential consistency (Lamport 1979)

● All processes see all memory writes in
the same order (but not necessarily
“program order”)
n Commuting order of writes between

processes is allowed, so long as all
processes see the same ordering

– “Real time” order is not required

● Read operation may not return result of
most recent write operation!
n If order matters, use semaphores!

7 Spring 1998, Lecture 08

Consistency Models
(cont.)

n Causal consistency (Hutto &
 Ahamad 1990)

● All processes see all causally-related
memory writes in the same order
n Commuting order of writes between

processes is allowed, so long as all
processes see the same ordering of
causally-related writes

n Two memory references are potentially
causally-related if the first one potentially
influences the second one

– Write a variable, then read that variable
– Write a variable, then write it again

● Disjoint writes can be pipelined to
improve memory system performance

● Must maintain a dependency graph to
keep track of which operations are
dependent on which other operations

8 Spring 1998, Lecture 08

Consistency Models
(cont.)

n Processor consistency (Goodman 1990)

● All processes see all writes from an
individual processor in program order,
and all writes to the same memory
location in the same order

● Disjoint writes, and writes by a single
processor, can be pipelined

n PRAM consistency (Lipton &
 Sandberg 1988)

● All processes see all writes from an
individual processor in program order
n Writes from different processors can be

seen in any order

● PRAM = pipelined RAM

● Writes by a single processor can be
pipelined to improve performance;
processor doesn’t have to wait for one to
finish before starting another

9 Spring 1998, Lecture 08

Consistency Models
(cont.)

n Weak consistency (Dubois 1988)

● Sequential consistency applies only to a
synchronization accesses, not individual
memory accesses
n Synchronization accesses act as a barrier

n All previous writes must be completed
before a synch. access is performed

n All synch. accesses must be completed
before a new read / write access can start

n Normal memory accesses can be pipelined

n Release consistency
 (Gharachorloo 1990)

● Sequential consistency applies only to lock
acquire and release operations
n Lock acquire — must acquire before

starting new reads / writes, but don’t have
to wait for previous writes to complete

n Lock release — must complete previous
writes before release, but don’t have to wait
to start new reads / writes

10 Spring 1998, Lecture 08

Comparison of Consistency Models

n Differ in restrictiveness, implementation
difficulty, ease of use, and performance

● Strict consistency — most restrictive, but
impossible to implement

● Sequential consistency — intuitive
semantics, but doesn’t allow much
concurrency
n Used in DSM systems
n Variation called relaxed memory is used in

commercial memory systems (allows
reads and writes to be reordered if they
access different memory locations)

● Causal, processor & PRAM consistency
— allow more concurrency, but have non-
intuitive semantics, and put extra burden
on the programmer (to avoid doing things
that require more consistency)

● Weak & release consistency — intuitive
semantics, but put extra burden on the
programmer

11 Spring 1998, Lecture 08

Implementing Sequential Consistency
in a Page-Based DSM

n Can a page move? …be replicated?

n Nonreplicated, nonmigrating pages

● All requests for the page have to be sent
to the owner of the page

● Easy to enforce sequential consistency —
owner orders all access request

● No concurrency

n Nonreplicated, migrating pages

● All requests for the page have to be sent
to the owner of the page

● Each time a remote page is accessed, it
migrates to the processor that accessed it

● Easy to enforce sequential consistency —
only processes on that processor can
access the page

● No concurrency

12 Spring 1998, Lecture 08

Implementing Sequential Consistency
in a Page-Based DSM (cont.)

n Replicated, migrating pages

● All requests for the page have to be sent
to the owner of the page

● Each time a remote page is accessed, it’s
copied to the processor that accessed it

● Multiple read operations can be done
concurrently

● Hard to enforce sequential consistency
—must invalidate (most common
approach) or update other copies of the
page during a write operation

n Replicated, nonmigrating pages

● Replicated at fixed locations

● All requests to the page have to be sent
to one of the owners of the page

● Hard to enforce sequential consistency
—must update other copies of the page
during a write operation

13 Spring 1998, Lecture 08

Granularity

n Page-based DSM

● Single page — simple to implement

● Multiple pages — take advantage of
locality of reference, amortize network
overhead over multiple pages
n Disadvantage — false sharing

n Shared-variable DSM

● Share only those variables that are need
by multiple processes

● Updating is easier, can avoid false
sharing, but puts more burden on the
programmer

n Object-based DSM

● Retrieve not only data, but entire object
— data, methods, etc.

● Have to heavily modify old programs

