Nachos

m Nachos is an instructional operating
system developed at UC Berkeley

m Nachos consists of two main parts:

e Operating system
m This is the part of the code that you will
study and modify

m This code is in the threads, userprog,
and network directories

m We will not study user programs, so you
can ignore files in the userprog directory

e Machine emulator — simulates a (slightly
old) MIPS CPU, registers, memory, timer
(clock), console, disk drive, and network

m You will study this code, but will not be
allowed to modify it

m This code is in the machine directory

m The OS and machine emulator run
together as a single UNIX process

Spring 1999, Lecture 10

Preparing for the First Project

m Copy the files and compile Nachos

e See “Getting Started” (online)
m Threads version, then network version

m Start reading:
e Read Nachos “Overview paper” (online)

¢ Read Section 2 “Nachos Machine” and
Section 3 “Nachos Threads” in Narten'’s
“A Road Map Through Nachos” (online)

e Read about threads, synchronization,
interrupts, and networking in Kalra’s
“Salsa — An OS Tutorial” (online)

o Start looking at the code in the threads,
machine and network directories

e Road Map plus printouts of all code are
available in the MCS office for $4.50

m If you are not familiar with C++ or the gdb
debugger, see the class web page

Spring 1999, Lecture 10

Preparing for the First Project
(cont.)

m Compiling the code

¢ Nachos source code is available in
~walker/pub

e Read ~walker/pub/README

e Decide where you want to work, so you
can copy files from the appropriate
directory into your account

m ~walker/pub/nachos-3.4-hp
— For HP workstations (aegis, intrepid)
— Recommended
m ~walker/pub/nachos-3.4-sparc
— For Sun workstations (nimitz)
m ~walker/pub/nachos-3.4-orig
— The original, unmodified version

e Read “Project 1 — Getting Started” on
the class web page to find out how to
copy the necessary files to your account,
and compile an executable copy of
Nachos into the threads directory

Spring 1999, Lecture 10

Nachos — The Emulated Machine

m Code is in the machine directory

m machine.h, machine.cc — emulates the
part of the machine that executes user
programs: main memory, processor
registers, etc.

B mipssim.cc — emulates the integer
instruction set of a MIPS R2/3000 CPU.

m interrupt.h, interrupt.cc — manages
enabling and disabling interrupts as part
of the machine emulation.

m timer.h, timer.cc — emulates a clock
that periodically causes an interrupt to
occur.

m stats.h — collects interesting statistics.

Spring 1999, Lecture 10

Nachos — The Operating System

For now, we will mostly be concerned with
code in the threads directory

main.cc, threadtest.cc — a simple test of
the thread routines.

system.h, system.cc — Nachos
startup/shutdown routines.

thread.h, thread.cc — thread data
structures and thread operations such as
thread fork, thread sleep and thread finish.

scheduler.h, scheduler.cc — manages
the list of threads that are ready to run.

list.h, list.cc — generic list management.

utility.h, utility.cc — some useful
definitions and debugging routines.

Spring 1999, Lecture 10

Nachos Threads

m As distributed, Nachos does not support
multiple processes, only threads

o All threads share / execute the same
code (the Nachos source code)

¢ All threads share the same global
variables (have to worry about synch.)

m Threads can be in one of 4 states:

e JUST_CREATED — exists, has not
stack, not ready yet

e READY — on the ready list, ready to run

e RUNNING — currently running (variable
currentThread points to currently running
thread)

e BLOCKED — waiting on some external
even, probably should be on some event
waiting queue

6 Spring 1999, Lecture 10

Scheduling in Nachos

The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

e Current thread calls Thread::Sleep() (to
block (wait) on some event)

e Current thread calls Thread::Yield() to
explicitly yield the CPU

main() (in threads/main.cc)
calls Initialize() (in threads/system.cc)

o which starts scheduler, an instance of
class Scheduler (defined in
threads/scheduler.h and scheduler.cc)

Interesting functions:

e Mechanics of running a thread:

m Scheduler::ReadyToRun() — puts a
thread at the tail of the ready queue

m Scheduler::FindNextToRun() — returns
thread at the head of the ready queue

m Scheduler::Run() — switches to thread

Spring 1999, Lecture 10

Scheduling in Nachos
(cont.)

Scheduler::Scheduler ()

{

readyList = new List;
}
void

Scheduler::ReadyToRun (Thread *thread)

{
DEBUG('t,
"Putting thread %s on ready list.\n",
thread->getName());
thread->setStatus(READY);
readyList->Append((void *)thread);
}

Thread *
Scheduler::FindNextToRun ()

{
}

8 Spring 1999, Lecture 10

return (Thread *)readyList->Remove();

Scheduling in Nachos

(cont.)
void
Scheduler::Run (Thread *nextThread)
{

Thread *oldThread = currentThread;

oldThread->CheckOverflow();
currentThread = nextThread,
currentThread->setStatus(RUNNING);

DEBUG('t', "Switching from thread \"%s\"
to thread \"%s\"\n",oldThread->getName(),
nextThread->getName());
SWITCH(oldThread, nextThread);
DEBUG('t", "Now in thread \"%s\"\n",
currentThread->getName());

if (threadToBeDestroyed != NULL) {
delete threadToBeDestroyed;
threadToBeDestroyed = NULL;

}

Working with a
Non-Preemptive Scheduler

m The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

e Current thread calls Thread::Sleep() (to
block (wait) on some event)

e Current thread calls Thread::Yield() to
explicitly yield the CPU

m Some interesting functions:

e Thread::Fork() — create a new thread to
run a specified function with a single
argument, and put it on the ready queue

e Thread:Yield() — if there are other
threads waiting to run, suspend this
thread and run another

e Thread::Sleep() — this thread is waiting
on some event, so suspend it, and hope
someone else wakes it up later

e Thread::Finish() — terminate the
currently running thread

9 } Spring 1999, Lecture 10 10 Spring 1999, Lecture 10
Manipulating Threads in Nachos Mampulatmg(‘(l;(r)l;?e;ds in Nachos

void void

Thread::Fork(VoidFunctionPtr func, int arg) Thread::Yield ()

{ {

DEBUG('t","Forking thread \"%s\" with
func = 0x%x, arg = %d\n",
name, (int) func, arg);

StackAllocate(func, arg);
IntStatus oldLevel = interrupt->
SetLevel(IntOff);

scheduler->ReadyToRun(this);
(void) interrupt->SetLevel(oldLevel);

11 Spring 1999, Lecture 10

Thread *nextThread;

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

ASSERT (this == currentThread);
DEBUG('t', "Yielding thread \"%s\"\n",
getName());

nextThread = scheduler->
FindNextToRun();

if (nextThread !'= NULL) {
scheduler->ReadyToRun(this);
scheduler->Run(nextThread);

}

(void) interrupt->SetLevel(oldLevel);

12 Spring 1999, Lecture 10

Manipulating Threads in Nachos
(cont.)

void
Thread::Sleep ()
{

Thread *nextThread;

ASSERT (this == currentThread);

ASSERT (interrupt->getLevel() == IntOff);

DEBUG('t', "Sleeping thread \"%s\"\n",
getName());

status = BLOCKED;

while ((nextThread = scheduler->
FindNextToRun()) == NULL)
interrupt->ldle();

scheduler->Run(nextThread);

13 Spring 1999, Lecture 10

Semaphores in Nachos

m The class Semaphore is defined in
threads/synch.h and synch.cc

e The classes Lock and Condition are also
defined , but their member functions are
empty (implementation left as exercise)

m Interesting functions:

e Semaphores:

m Semaphore::Semaphore() — creates a
semaphore with specified name & value

m Semaphore::P() — semaphore wait
m Semaphore::V() — semaphore signal

e Locks:
m Lock::Acquire()
m Lock::Release()

¢ Condition variables:
m Condition::Wait()
m Condition::Signal()

14 Spring 1999, Lecture 10

Networking in Nachos

m Low-level emulation of the physical
network is defined in
machine/network.h and network.cc

e Provides ordered, unreliable, fixed-size
packet delivery to other Nachos machines

e Packets can be dropped (user-
controllable), but are never corrupted

m High-level protocols for communication
between multiple Nachos machines are
defined in network/post.h and post.cc

¢ An instance of class PostOffice manages
a set of MailBoxes for each machine
m PostOffice::Send() sends a message to a
specific machine and mailbox

m PostOffice::Receive() retrieves a
message, or waits if none is available

e Could provide reliable delivery of
arbitrary-size messages, but currently
does not (see Spring’97 AOS Project 1)

15 Spring 1999, Lecture 10

