
1 Spring 1999, Lecture 10

Nachos

n Nachos is an instructional operating
system developed at UC Berkeley

n Nachos consists of two main parts:

● Operating system
n This is the part of the code that you will

study and modify

n This code is in the threads, userprog,
and network directories

n We will not study user programs, so you
can ignore files in the userprog directory

● Machine emulator — simulates a (slightly
old) MIPS CPU, registers, memory, timer
(clock), console, disk drive, and network
n You will study this code, but will not be

allowed to modify it
n This code is in the machine directory

n The OS and machine emulator run
together as a single UNIX process

2 Spring 1999, Lecture 10

Preparing for the First Project

n Copy the files and compile Nachos

● See “Getting Started” (online)
n Threads version, then network version

n Start reading:

● Read Nachos “Overview paper” (online)

● Read Section 2 “Nachos Machine” and
Section 3 “Nachos Threads” in Narten’s
“A Road Map Through Nachos” (online)

● Read about threads, synchronization,
interrupts, and networking in Kalra’s
“Salsa — An OS Tutorial” (online)

● Start looking at the code in the threads,
machine and network directories

● Road Map plus printouts of all code are
available in the MCS office for $4.50

n If you are not familiar with C++ or the gdb
debugger, see the class web page

3 Spring 1999, Lecture 10

Preparing for the First Project
(cont.)

n Compiling the code

● Nachos source code is available in
~walker/pub

● Read ~walker/pub/README

● Decide where you want to work, so you
can copy files from the appropriate
directory into your account
n ~walker/pub/nachos-3.4-hp

– For HP workstations (aegis, intrepid)

– Recommended

n ~walker/pub/nachos-3.4-sparc
– For Sun workstations (nimitz)

n ~walker/pub/nachos-3.4-orig
– The original, unmodified version

● Read “Project 1 — Getting Started” on
the class web page to find out how to
copy the necessary files to your account,
and compile an executable copy of
Nachos into the threads directory

4 Spring 1999, Lecture 10

Nachos — The Emulated Machine

n Code is in the machine directory

n machine.h, machine.cc — emulates the
part of the machine that executes user
programs: main memory, processor
registers, etc.

n mipssim.cc — emulates the integer
instruction set of a MIPS R2/3000 CPU.

n interrupt.h, interrupt.cc — manages
enabling and disabling interrupts as part
of the machine emulation.

n timer.h, timer.cc — emulates a clock
that periodically causes an interrupt to
occur.

n stats.h — collects interesting statistics.

5 Spring 1999, Lecture 10

Nachos — The Operating System

n For now, we will mostly be concerned with
code in the threads directory

n main.cc, threadtest.cc — a simple test of
the thread routines.

n system.h, system.cc — Nachos
startup/shutdown routines.

n thread.h, thread.cc — thread data
structures and thread operations such as
thread fork, thread sleep and thread finish.

n scheduler.h, scheduler.cc — manages
the list of threads that are ready to run.

n list.h, list.cc — generic list management.

n utility.h, utility.cc — some useful
definitions and debugging routines.

6 Spring 1999, Lecture 10

Nachos Threads

n As distributed, Nachos does not support
multiple processes, only threads

● All threads share / execute the same
code (the Nachos source code)

● All threads share the same global
variables (have to worry about synch.)

n Threads can be in one of 4 states:

● JUST_CREATED — exists, has not
stack, not ready yet

● READY — on the ready list, ready to run

● RUNNING — currently running (variable
currentThread points to currently running
thread)

● BLOCKED — waiting on some external
even, probably should be on some event
waiting queue

7 Spring 1999, Lecture 10

Scheduling in Nachos

n The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

● Current thread calls Thread::Sleep() (to
block (wait) on some event)

● Current thread calls Thread::Yield() to
explicitly yield the CPU

n main() (in threads/main.cc)
calls Initialize() (in threads/system.cc)

● which starts scheduler, an instance of
class Scheduler (defined in
threads/scheduler.h and scheduler.cc)

n Interesting functions:

● Mechanics of running a thread:
n Scheduler::ReadyToRun() — puts a

thread at the tail of the ready queue
n Scheduler::FindNextToRun() — returns

thread at the head of the ready queue

n Scheduler::Run() — switches to thread
8 Spring 1999, Lecture 10

Scheduling in Nachos
(cont.)

Scheduler::Scheduler ()
{

 readyList = new List;
}

void
Scheduler::ReadyToRun (Thread *thread)
{

DEBUG('t',
"Putting thread %s on ready list.\n",
thread->getName());

thread->setStatus(READY);
readyList->Append((void *)thread);

}

Thread *
Scheduler::FindNextToRun ()
{

 return (Thread *)readyList->Remove();
}

9 Spring 1999, Lecture 10

Scheduling in Nachos
(cont.)

void
Scheduler::Run (Thread *nextThread)
{

Thread *oldThread = currentThread;

oldThread->CheckOverflow();
currentThread = nextThread;
currentThread->setStatus(RUNNING);

DEBUG('t', "Switching from thread \"%s\"
to thread \"%s\"\n",oldThread->getName(),

nextThread->getName());
SWITCH(oldThread, nextThread);
DEBUG('t', "Now in thread \"%s\"\n",

currentThread->getName());

if (threadToBeDestroyed != NULL) {
delete threadToBeDestroyed;
threadToBeDestroyed = NULL;

}
}

10 Spring 1999, Lecture 10

Working with a
Non-Preemptive Scheduler

n The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

● Current thread calls Thread::Sleep() (to
block (wait) on some event)

● Current thread calls Thread::Yield() to
explicitly yield the CPU

n Some interesting functions:

● Thread::Fork() — create a new thread to
run a specified function with a single
argument, and put it on the ready queue

● Thread::Yield() — if there are other
threads waiting to run, suspend this
thread and run another

● Thread::Sleep() — this thread is waiting
on some event, so suspend it, and hope
someone else wakes it up later

● Thread::Finish() — terminate the
currently running thread

11 Spring 1999, Lecture 10

Manipulating Threads in Nachos

void
Thread::Fork(VoidFunctionPtr func, int arg)
{

DEBUG('t',"Forking thread \"%s\" with
func = 0x%x, arg = %d\n",
name, (int) func, arg);

StackAllocate(func, arg);

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

scheduler->ReadyToRun(this);
(void) interrupt->SetLevel(oldLevel);

}

12 Spring 1999, Lecture 10

Manipulating Threads in Nachos
(cont.)

void
Thread::Yield ()
{

Thread *nextThread;

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

ASSERT(this == currentThread);
DEBUG('t', "Yielding thread \"%s\"\n",

getName());

nextThread = scheduler->
FindNextToRun();

if (nextThread != NULL) {
scheduler->ReadyToRun(this);
scheduler->Run(nextThread);

}
(void) interrupt->SetLevel(oldLevel);

}

13 Spring 1999, Lecture 10

Manipulating Threads in Nachos
(cont.)

void
Thread::Sleep ()
{

Thread *nextThread;

ASSERT(this == currentThread);
ASSERT(interrupt->getLevel() == IntOff);
DEBUG('t', "Sleeping thread \"%s\"\n",

getName());

status = BLOCKED;
while ((nextThread = scheduler->

FindNextToRun()) == NULL)
interrupt->Idle();

scheduler->Run(nextThread);
}

14 Spring 1999, Lecture 10

Semaphores in Nachos

n The class Semaphore is defined in
threads/synch.h and synch.cc

● The classes Lock and Condition are also
defined , but their member functions are
empty (implementation left as exercise)

n Interesting functions:

● Semaphores:
n Semaphore::Semaphore() — creates a

semaphore with specified name & value

n Semaphore::P() — semaphore wait

n Semaphore::V() — semaphore signal

● Locks:
n Lock::Acquire()

n Lock::Release()

● Condition variables:
n Condition::Wait()

n Condition::Signal()

15 Spring 1999, Lecture 10

Networking in Nachos

n Low-level emulation of the physical
network is defined in
machine/network.h and network.cc

● Provides ordered, unreliable, fixed-size
packet delivery to other Nachos machines

● Packets can be dropped (user-
controllable), but are never corrupted

n High-level protocols for communication
between multiple Nachos machines are
defined in network/post.h and post.cc

● An instance of class PostOffice manages
a set of MailBoxes for each machine
n PostOffice::Send() sends a message to a

specific machine and mailbox
n PostOffice::Receive() retrieves a

message, or waits if none is available

● Could provide reliable delivery of
arbitrary-size messages, but currently
does not (see Spring’97 AOS Project 1)

