Nachos

m Nachos is an instructional operating
system developed at UC Berkeley

m Nachos consists of two main parts:

e Operating system
m This is the part of the code that you will
study and modify

m This code is in the threads, userprog,
and network directories

m We will not study user programs, so you
can ignore files in the userprog directory

e Machine emulator — simulates a (slightly
old) MIPS CPU, registers, memory, timer
(clock), console, disk drive, and network

m You will study this code, but will not be
allowed to modify it

m This code is in the machine directory

m The OS and machine emulator run
together as a single UNIX process
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Preparing for the First Project

m Copy the files and compile Nachos

e See “Getting Started” (online)
m Threads version, then network version

m Start reading:
e Read Nachos “Overview paper” (online)

¢ Read Section 2 “Nachos Machine” and
Section 3 “Nachos Threads” in Narten'’s
“A Road Map Through Nachos” (online)

e Read about threads, synchronization,
interrupts, and networking in Kalra’s
“Salsa — An OS Tutorial” (online)

o Start looking at the code in the threads,
machine and network directories

e Road Map plus printouts of all code are
available in the MCS office for $4.50

m If you are not familiar with C++ or the gdb
debugger, see the class web page
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Preparing for the First Project
(cont.)

m Compiling the code

¢ Nachos source code is available in
~walker/pub

e Read ~walker/pub/README

e Decide where you want to work, so you
can copy files from the appropriate
directory into your account

m ~walker/pub/nachos-3.4-hp
— For HP workstations (aegis, intrepid)
— Recommended
m ~walker/pub/nachos-3.4-sparc
— For Sun workstations (nimitz)
m ~walker/pub/nachos-3.4-orig
— The original, unmodified version

e Read “Project 1 — Getting Started” on
the class web page to find out how to
copy the necessary files to your account,
and compile an executable copy of
Nachos into the threads directory
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Nachos — The Emulated Machine

m Code is in the machine directory

m machine.h, machine.cc — emulates the
part of the machine that executes user
programs: main memory, processor
registers, etc.

B mipssim.cc — emulates the integer
instruction set of a MIPS R2/3000 CPU.

m interrupt.h, interrupt.cc — manages
enabling and disabling interrupts as part
of the machine emulation.

m timer.h, timer.cc — emulates a clock
that periodically causes an interrupt to
occur.

m stats.h — collects interesting statistics.
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Nachos — The Operating System

For now, we will mostly be concerned with
code in the threads directory

main.cc, threadtest.cc — a simple test of
the thread routines.

system.h, system.cc — Nachos
startup/shutdown routines.

thread.h, thread.cc — thread data
structures and thread operations such as
thread fork, thread sleep and thread finish.

scheduler.h, scheduler.cc — manages
the list of threads that are ready to run.

list.h, list.cc — generic list management.

utility.h, utility.cc — some useful
definitions and debugging routines.
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Nachos Threads

m As distributed, Nachos does not support
multiple processes, only threads

o All threads share / execute the same
code (the Nachos source code)

¢ All threads share the same global
variables (have to worry about synch.)

m Threads can be in one of 4 states:

e JUST_CREATED — exists, has not
stack, not ready yet

e READY — on the ready list, ready to run

e RUNNING — currently running (variable
currentThread points to currently running
thread)

e BLOCKED — waiting on some external
even, probably should be on some event
waiting queue
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Scheduling in Nachos

The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

e Current thread calls Thread::Sleep() (to
block (wait) on some event)

e Current thread calls Thread::Yield() to
explicitly yield the CPU

main( ) (in threads/main.cc)
calls Initialize()  (in threads/system.cc)

o which starts scheduler, an instance of
class Scheduler (defined in
threads/scheduler.h and scheduler.cc)

Interesting functions:

e Mechanics of running a thread:

m Scheduler::ReadyToRun() — puts a
thread at the tail of the ready queue

m Scheduler::FindNextToRun( ) — returns
thread at the head of the ready queue

m Scheduler::Run( ) — switches to thread
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Scheduling in Nachos
(cont.)

Scheduler::Scheduler ()

{

readyList = new List;
}
void

Scheduler::ReadyToRun (Thread *thread)

{
DEBUG('t,
"Putting thread %s on ready list.\n",
thread->getName());
thread->setStatus(READY);
readyList->Append((void *)thread);
}

Thread *
Scheduler::FindNextToRun ()

{
}
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return (Thread *)readyList->Remove();




Scheduling in Nachos

(cont.)
void
Scheduler::Run (Thread *nextThread)
{

Thread *oldThread = currentThread;

oldThread->CheckOverflow();
currentThread = nextThread,
currentThread->setStatus(RUNNING);

DEBUG('t', "Switching from thread \"%s\"
to thread \"%s\"\n",oldThread->getName(),
nextThread->getName());
SWITCH(oldThread, nextThread);
DEBUG('t", "Now in thread \"%s\"\n",
currentThread->getName());

if (threadToBeDestroyed != NULL) {
delete threadToBeDestroyed;
threadToBeDestroyed = NULL;

}

Working with a
Non-Preemptive Scheduler

m The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

e Current thread calls Thread::Sleep() (to
block (wait) on some event)

e Current thread calls Thread::Yield() to
explicitly yield the CPU

m Some interesting functions:

e Thread::Fork( ) — create a new thread to
run a specified function with a single
argument, and put it on the ready queue

e Thread:Yield( ) — if there are other
threads waiting to run, suspend this
thread and run another

e Thread::Sleep( ) — this thread is waiting
on some event, so suspend it, and hope
someone else wakes it up later

e Thread::Finish( ) — terminate the
currently running thread
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void void

Thread::Fork(VoidFunctionPtr func, int arg) Thread::Yield ()

{ {

DEBUG('t","Forking thread \"%s\" with
func = 0x%x, arg = %d\n",
name, (int) func, arg);

StackAllocate(func, arg);
IntStatus oldLevel = interrupt->
SetLevel(IntOff);

scheduler->ReadyToRun(this);
(void) interrupt->SetLevel(oldLevel);
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Thread *nextThread;

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

ASSERT (this == currentThread);
DEBUG('t', "Yielding thread \"%s\"\n",
getName());

nextThread = scheduler->
FindNextToRun();

if (nextThread !'= NULL) {
scheduler->ReadyToRun(this);
scheduler->Run(nextThread);

}

(void) interrupt->SetLevel(oldLevel);
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Manipulating Threads in Nachos
(cont.)

void
Thread::Sleep ()
{

Thread *nextThread;

ASSERT (this == currentThread);

ASSERT (interrupt->getLevel() == IntOff);

DEBUG('t', "Sleeping thread \"%s\"\n",
getName());

status = BLOCKED;

while ((nextThread = scheduler->
FindNextToRun()) == NULL)
interrupt->ldle();

scheduler->Run(nextThread);
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Semaphores in Nachos

m The class Semaphore is defined in
threads/synch.h and synch.cc

e The classes Lock and Condition are also
defined , but their member functions are
empty (implementation left as exercise)

m Interesting functions:

e Semaphores:

m Semaphore::Semaphore() — creates a
semaphore with specified name & value

m Semaphore::P() — semaphore wait
m Semaphore::V() — semaphore signal

e Locks:
m Lock::Acquire()
m Lock::Release()

¢ Condition variables:
m Condition::Wait( )
m Condition::Signal()
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Networking in Nachos

m Low-level emulation of the physical
network is defined in
machine/network.h and network.cc

e Provides ordered, unreliable, fixed-size
packet delivery to other Nachos machines

e Packets can be dropped (user-
controllable), but are never corrupted

m High-level protocols for communication
between multiple Nachos machines are
defined in network/post.h and post.cc

¢ An instance of class PostOffice manages
a set of MailBoxes for each machine
m PostOffice::Send( ) sends a message to a
specific machine and mailbox

m PostOffice::Receive() retrieves a
message, or waits if none is available

e Could provide reliable delivery of
arbitrary-size messages, but currently
does not (see Spring’97 AOS Project 1)
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