
1 Spring 1999, Lecture 11

Details of Semaphore Operation

n Semaphore “s” is initially 1

n Before entering the critical section, a
thread calls “P(s)” or “wait(s)”

● wait (s):
n s = s – 1

n if (s < 0)
block the thread that called wait(s) on a

queue associated with semaphore s

n otherwise
let the thread that called wait(s) continue into

the critical section

n After leaving the critical section, a thread
calls “V(s)” or “signal(s)”

● signal (s):
n s = s + 1

n if (s ≤ 0), then

wake up one of the threads that called
wait(s), and run it so that it can continue
into the critical section

2 Spring 1999, Lecture 11

Two Versions of Semaphores

n Semaphores from last time (simplified):

wait (s): signal (s):

s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up one of
that called wait(s) the waiting threads

otherwise
continue into CS

n "Classical" version of semaphores:

wait (s): signal (s):

if (s ≤ 0) if (a thread is waiting)
block the thread wake up one of
that called wait(s) the waiting threads

s = s – 1 s = s + 1
continue into CS

n Do both work? What is the difference??

3 Spring 1999, Lecture 11

Semaphores in Nachos

n The class Semaphore is defined in
threads/synch.h and synch.cc

● The classes Lock and Condition are also
defined , but their member functions are
empty (implementation left as exercise)

n Interesting functions:

● Semaphores:
n Semaphore::Semaphore() — creates a

semaphore with specified name & value

n Semaphore::P() — semaphore wait

n Semaphore::V() — semaphore signal

● Locks:
n Lock::Acquire()

n Lock::Release()

● Condition variables:
n Condition::Wait()

n Condition::Signal()

4 Spring 1999, Lecture 11

Semaphores in Nachos

void
Semaphore::P()
{
 IntStatus oldLevel = interrupt->

SetLevel(IntOff); // disable interrupts

 while (value == 0) { // sema not avail
queue-> // so go to sleep

Append((void *)currentThread);
currentThread->Sleep();

 }

 value--; // semaphore available,
// consume its value

(void) interrupt-> // re-enable interrupts
SetLevel(oldLevel);

}

5 Spring 1999, Lecture 11

Semaphores in Nachos
(cont.)

void
Semaphore::V()
{
 Thread *thread;

 IntStatus oldLevel = interrupt->
SetLevel(IntOff);

 thread = (Thread *)queue->Remove();
 if (thread != NULL) // make thread ready,

// consuming the V immediately
scheduler->ReadyToRun(thread);

 value++;

 (void) interrupt->SetLevel(oldLevel);
}

6 Spring 1999, Lecture 11

The Coke Machine
(Bounded-Buffer Producer-Consumer)

/* number of full slots (Cokes) in machine */
semaphore fullSlot = 0;
/* number of empty slots in machine */
semaphore emptySlot = 100;
/* only one person accesses machine at a time */
semaphore mutex = 1;

DeliveryPerson()
{

emptySlot->P(); /* empty slot avail? */
mutex->P(); /* exclusive access */
put 1 Coke in machine
mutex->V();
fullSlot->V(); /* another full slot! */

}

ThirstyPerson()
{

fullSlot->P(); /* full slot (Coke)? */
mutex->P(); /* exclusive access */
get 1 Coke from machine
mutex->V();
emptySlot->V(); /* another empty slot! */

}

7 Spring 1999, Lecture 11

From Semaphores to
Locks and Condition Variables

n A semaphore serves two purposes:

● Mutual exclusion — protect shared data
n mutex in Coke machine

n milk in Too Much Milk

n Always a binary semaphore

● Synchronization — temporally coordinate
events (one thread waits for something,
other thread signals when it’s available)
n fullSlot and emptySlot in Coke machine

n Either a binary or counting semaphore

n Idea — two separate constructs:

● Locks — provide mutually exclusion

● Condition variables — provide
synchronization

● Like semaphores, locks and condition
variables are language-independent, and
are available in many programming
environments

8 Spring 1999, Lecture 11

Locks

n Locks provide mutually exclusive access
to shared data:

● A lock can be “locked” or “unlocked”
(sometimes called “busy” and “free”)

n Operations on locks (Nachos syntax):

● Lock(*name) — create a new (initially
unlocked) Lock with the specified name

● Lock::Acquire() — wait (block) until the
lock is unlocked; then lock it

● Lock::Release() — unlock the lock; then
wake up (signal) any threads waiting on it
in Lock::Acquire()

n Can be implemented:

● Trivially by binary semaphores (create a
private lock semaphore, use P and V)

● By lower-level constructs, much like
semaphores are implemented

9 Spring 1999, Lecture 11

Locks (cont.)

n Conventions:

● Before accessing shared data, call
Lock::Acquire() on a specific lock
n Complain (via ASSERT) if a thread tries to

Acquire a lock it already has

● After accessing shared data, call Lock::
Release() on that same lock
n Complain if a thread besides the one that

Acquired a lock tries to Release it

n Example of using locks for mutual
exclusion (here, “milk” is a lock):

Thread A Thread B

milk–>Acquire(); milk–>Acquire();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk–>Release(); milk–>Release();

● The test in threads/threadtest.cc should
work exactly the same if locks are used
instead of semaphores

10 Spring 1999, Lecture 11

Locks vs. Condition Variables

n Consider the following code:

Queue::Add() { Queue::Remove() {
lock->Acquire(); lock->Acquire();
add item if item on queue
lock->Release(); remove item

} lock->Release();
return item;

}

● Queue::Remove will only return an item if
there’s already one in the queue

n If the queue is empty, it might be more
desirable for Queue::Remove to wait until
there is something to remove

● Can’t just go to sleep — if it sleeps while
holding the lock, no other thread can
access the shared queue, add an item to
it, and wake up the sleeping thread

● Solution: condition variables will let a
thread sleep inside a critical section, by
releasing the lock while the thread sleeps

11 Spring 1999, Lecture 11

Condition Variables

n Condition variables coordinate events

n Operations on condition variables
(Nachos syntax):

● Condition(*name) — create a new
instance of class Condition (a condition
variable) with the specified name
n After creating a new condition, the

programmer must call Lock::Lock() to
create a lock that will be associated with
that condition variable

● Condition::Wait(conditionLock) — release
the lock and wait (sleep); when the thread
wakes up, immediately try to re-acquire
the lock; return when it has the lock

● Condition::Signal(conditionLock) — if
threads are waiting on the lock, wake up
one of those threads and put it on the
ready list; otherwise do nothing

12 Spring 1999, Lecture 11

Condition Variables (cont.)

n Operations (cont.):

● Condition::Broadcast(conditionLock) — if
threads are waiting on the lock, wake up
all of those threads and put them on the
ready list; otherwise do nothing

n Important: a thread must hold the lock
before calling Wait, Signal, or Broadcast

n Can be implemented:

● Carefully by higher-level constructs
(create and queue threads, sleep and
wake up threads as appropriate)

● Carefully by binary semaphores (create
and queue semaphores as appropriate,
use P and V to synchronize)
n Does this work? More on this in a few

minutes…

● Carefully by lower-level constructs, much
like semaphores are implemented

13 Spring 1999, Lecture 11

Using Locks and Condition Variables

n Associated with a data structure is both a
lock and a condition variable

● Before the program performs an operation
on the data structure, it acquires the lock

● If it needs to wait until another operation
puts the data structure into an appropriate
state, it uses the condition variable to wait

n Unbounded-buffer producer-consumer:

Lock *lk; int avail = 0;
Condition *c;

/* consumer */
/* producer */ while (1) {
while (1) { lk-> Acquire();

lk->Acquire(); if (avail==0)
produce next item c->Wait(lk);
avail++; consume next item
c->Signal(lk) avail--;
lk->Release(); lk->Release();

} }

14 Spring 1999, Lecture 11

Comparing Semaphores
and Condition Variables

n Semaphores and condition variables are
pretty similar — perhaps we can build
condition variables out of semaphores

n Does this work?

Condition::Wait() { Condition::Signal() {
sema->P(); sema->V();

} }

● No, we’re going to use these condition
operations inside a lock. What happens if
we use semaphores inside a lock?

n How about this?

Condition::Wait() { Condition::Signal() {
lock->Release(); sema->V();
sema->P(); }
lock->Acquire();

}

● How do semaphores and condition
variables differ with respect to keeping
track of history?

15 Spring 1999, Lecture 11

Comparing Semaphores
and Condition Variables (cont.)

Condition::Wait() { Condition::Signal() {
lock->Release(); sema->V();
sema->P(); }
lock->Acquire();

}

n Semaphores have a value, CVs do not!

n On a semaphore signal (a V), the value
of the semaphore is always incremented,
even if no one is waiting

● Later on, if a thread does a semaphore
wait (a P), the value of the semaphore is
decremented and the thread continues

n On a condition variable signal, if no one
is waiting, the signal has no effect

● Later on, if a thread does a condition
variable wait, it waits (it always waits!)

● It doesn’t matter how many signals have
been made beforehand

16 Spring 1999, Lecture 11

Two Kinds of Condition Variables

n Hoare-style (named after C.A.R. Hoare,
used in most textbooks including OSC):

● When a thread performs a Signal(), it
gives up the lock (and the CPU)
n The waiting thread is picked as the next

thread that gets to run

● Previous example uses Hoare-style CVs

n Mesa-style (used in Mesa, Nachos, and
most real operating systems):

● When a thread performs a Signal(), it
keeps the lock (and the CPU)
n The waiting thread gets put on the ready

queue with no special priority
– There is no guarantee that it will be

picked as the next thread that gets to run
– Wore yet, another thread may even run

and acquire the lock before it does!

● When using Mesa-style CVs, always
surround the Wait() with a “while” loop

