
1 Spring 1999, Lecture 13

From Physical Clocks to
Logical Clocks

n Physical clocks (last time)

● With a receiver, a clock can be
synchronized to within 0.1–10 ms of UTC

● On a network, computer clocks can be
synchronized to within 30 ms of each
other (using NTP)

● Quartz crystal clocks drift 1 µs per second
(1 ms per 16.6 minutes)

● In 30 ms, a 100 MIPS machine can
execute 3 million instructions

● We will refer to these clocks as physical
clocks, and say they measure global time

n Idea — abandon idea of physical time

● For many purposes, it is sufficient to
know the order in which events occurred

● Lamport (1978) — introduce logical
(virtual) time, synchronize logical clocks

2 Spring 1999, Lecture 13

Events and Event Ordering

n For many purposes, it is sufficient to
know the order in which two events
occurred

● An event may be an instruction execution,
may be a function execution, etc.

● Events include message send / receive

n Within a single process, or between two
processes on the same computer,

● the order in which two events occur can
be determined using the physical clock

n Between two different computers in a
distributed system,

● the order in which two events occur
cannot be determined using local
physical clocks, since those clocks
cannot be synchronized perfectly

3 Spring 1999, Lecture 13

The “Happened Before” Relation

n Lamport defined the happened before
relation (denoted as “→”), which
describes a causal ordering of events:

(1) if a and b are events in the same
process, and a occurred before b,
then a→b

(2) if a is the event of sending a message m
in one process, and b is the event of
receiving that message m in another
process, then a→b

(3) if a→b, and b→c, then a→c (i.e., the
relation “→” is transitive

n Causality:

● Past events influence future events

● This influence among causally related
events (those that can be ordered by “→”)
is referred to a causal affects

● If a→b, event a causally affects event b
4 Spring 1999, Lecture 13

The “Happened Before” Relation
(cont.)

n Concurrent events;

● Two distinct events a and b are said to be
concurrent (denoted “a || b”), if neither
a→b nor b→a

● In other words, concurrent events do not
causally affect each other

n For any two events a and b in a system,
either: a→b or b→a or a || b

P

p4

p3

p2

p1

p0

Q

q4

q3

q2

q1

q0

R

r1

r0

5 Spring 1999, Lecture 13

Lamport’s Logical Clocks

n To implement “→” in a distributed
system, Lamport (1978) introduced the
concept of logical clocks, which captures
“→” numerically

n Each process Pi has a logical clock Ci

n Clock Ci can assign a value Ci (a) to any
event a in process Pi

● The value Ci (a) is called the timestamp
of event a in process Pi

● The value C(a) is called the timestamp of
event a in whatever process it occurred

n The timestamps have no relation to
physical time, which leads to the term
logical clock

● The logical clocks assign monotonically
increasing timestamps, and can be
implemented by simple counters

6 Spring 1999, Lecture 13

Conditions Satisfied by the
Logical Clocks

n Clock condition: if a→b,
then C(a)<C(b)

● If event a happens before event b, then
the clock value (timestamp) of a should
be less than the clock value of b

● Note that we can not say: if C(a)<C(b),
then a→b

n Correctness conditions (must be
satisfied by the logical clocks to meet the
clock condition above):

[C1] For any two events a and b in the
same process Pi , if a happens
before b, then Ci (a) < Ci (b)

[C2] If event a is the event of sending
a message m in process Pi ,
and event b is the event of receiving
that same message m in a different
process Pk, then Ci (a) < Ck (b)

7 Spring 1999, Lecture 13

Implementation of Logical Clocks

n Implementation Rules (guarantee that
the logical clocks satisfy the correctness
conditions):

[IR1] Clock Ci must be incremented
between any two successive events
in process Pi :

Ci := Ci + d (d>0) (usually d=1)

[IR2] If event a is the event of sending
a message m in process Pi ,
then message m is assigned a
timestamp tm =Ci (a)

When that same message m is
received by a different process Pk,
Ck is set to a value greater than or
equal to its present value, and
greater than tm :

Ck := max(Ck , tm + d)
 (d>0) (usually d=1)

8 Spring 1999, Lecture 13

Example of Logical Clocks

n Updating logical clocks using Lamport’s
method:

“enn” is event; “(n)” is clock value

n Notes:

● Clocks initially 0, d=1

● Most clocks incremented due to IR1

● Sends e12, e22, e16, and e24 use IR1

● Receives e23, e15, and e17 set to Ck

● Receive e25 sets to tm +d = 6+1 = 7

P1
e11

(1)

e12

(2)

e13

(3)

e14

(4)

e15

(5)

e16

(6)

e17

(7)

P2
e21

(1)

e22

(2)

e23

(3)

e24

(4)

e25

(7)

9 Spring 1999, Lecture 13

Obtaining a Total Ordering
Using Logical Clocks

n The happened before relationship “→”
defines an irreflexive partial order
among events

n A total order of events (“⇒ ”) can be
obtained as follows:

● If a is any event in process Pi , and b is
any event in process Pk , then a ⇒ b if and
only if either:

Ci (a) < Ck (b) or

Ci (a) = Ck (b) and Pi << Pk

where “<<“ denotes a relation that totally
orders the processes to break ties

P1
e11

(1)

e12

(2)

P2
e21

(1)

e22

(3)

10 Spring 1999, Lecture 13

Limitation of Logical Clocks

n With Lamport’s logical clocks, if a→b,
then C(a) < C(b)

● The following is not necessarily true if
events a and b occur in different
processes: if C(a) < C(b), then a→b

n Example illustrating this limitation:

● C(e11) < C(e22), and e11→e22 is true

● C(e11) < C(e32), but e11→e32 is false

åCannot determine whether two events
are causally related from timestamps

P1
e11

(1)

e12

(2)

P2
e21

(1)

e22

(3)

P3
e31

(1)

e32

(2)

e33

(3)

11 Spring 1999, Lecture 13

Vector Clocks

n Independently proposed by Fidge and by
Mattern in 1988

n Vector clocks:

● Assume system contains n processes

● Each process Pi has a clock Ci , which is
an integer vector of length n

Ci = (Ci [1], Ci [2], … Ci [n])

● Ci (a) is the timestamp (clock value) of
event a at process Pi

● Ci [i](a), entry i of of Ci , is Pi ’s logical
time

● Ci [k](a), entry k of of Ci (where k≠i), is
 Pi ’s best guess of the logical time at Pk

n More specifically, the time of the
occurrence of the last event in Pk which
“happened before” the current event in Pi
(based on messages received)

12 Spring 1999, Lecture 13

Implementation of Vector Clocks

n Implementation Rules:

[IR1] Clock Ci must be incremented
between any two successive events
in process Pi :

Ci [i]:= Ci [i] + d (d>0, usually d=1)

[IR2] If event a is the event of sending
a message m in process Pi ,
then message m is assigned a
vector timestamp tm =Ci (a)

When that same message m is
received by a different process Pk ,
Ck is updated as follows:

∀ p, Ck [p]:= max(Ck [p], tm [p] + d)
 (usually d=0 unless needed to model

network delay)

n It can be shown that ∀ i, ∀ k : Ci [i] ≥ Ck [i]

13 Spring 1999, Lecture 13

Implementation of Vector Clocks
(cont.)

n Rules for comparing timestamps can also
be established so that if ta < tb , then a→b

● ta = tb iff for all i, ta[i] = tb[i]

● ta <> tb iff for any i, ta[i] <> tb[i]

● ta <= tb iff for all i, ta[i] <= tb[i]
(each one equal or less)

● ta < tb iff ta <= tb and ta <> tb
(some (but not all) equal, some less)

● Solves the problem with Lamport’s clocks

n Examples:

● 1 1 2 3 = 1 1 2 3

● 1 1 2 3 <> 1 1 2 4

● 1 1 2 3 <= 1 1 2 4 1 1 2 3 <= 1 1 2 3

● 1 1 2 3 < 1 1 2 4

14 Spring 1999, Lecture 13

Example of Vector Clocks

n Updating vector clocks:

“enn” is event; “(n,n,n)” is clock value

n Notes:

● Events e11, e21, and e12 updated by IR1

● Receive e22 updated by IR1 and IR2

● Receive e13 tells P1 about P2 and P3
(P3 clock is old, but better than nothing!)

P1
e11

(1,0,0)

e12

(2,0,0)

P2
e21

(0,1,0)

P3

e22

(2,2,0)

e31

(0,0,1)

e32

(0,0,2)

e23

(2,3,1)

e24

(2,4,1)

e13

(3,4,1)

