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From Physical Clocks to
Logical Clocks

n Physical clocks (last time)

● With a receiver, a clock can be
synchronized to within 0.1–10 ms of UTC

● On a network, computer clocks can be
synchronized to within 30 ms of each
other (using NTP)

● Quartz crystal clocks drift 1 µs per second
(1 ms per 16.6 minutes)

● In 30 ms, a 100 MIPS machine can
execute 3 million instructions

● We will refer to these clocks as physical
clocks, and say they measure global time

n Idea — abandon idea of physical time

● For many purposes, it is sufficient to
know the order in which events occurred

● Lamport (1978) — introduce logical
(virtual) time, synchronize logical clocks
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Events and Event Ordering

n For many purposes, it is sufficient to
know the order in which two events
occurred

● An event may be an instruction execution,
may be a function execution, etc.

● Events include message send / receive

n Within a single process, or between two
processes on the same computer,

● the order in which two events occur can
be determined using the physical clock

n Between two different computers in a
distributed system,

● the order in which two events occur
cannot be determined using local
physical clocks, since those clocks
cannot be synchronized perfectly
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The “Happened Before” Relation

n Lamport defined the happened before
relation (denoted as “→”), which
describes a causal ordering of events:

(1) if a and b are events in the same 
process, and a occurred before b,
then a→b

(2) if a is the event of sending a message m
in one process, and b is the event of
receiving that message m in another 
process, then a→b

(3) if a→b, and b→c, then a→c  (i.e., the
relation “→” is transitive

n Causality:

● Past events influence future events

● This influence among causally related
events (those that can be ordered by “→”)
is referred to a causal affects

● If a→b, event a causally affects event b
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The “Happened Before” Relation
(cont.)

n Concurrent events;

● Two distinct events a and b are said to be
concurrent (denoted “a || b”), if neither
a→b nor b→a

● In other words, concurrent events do not
causally affect each other

n For any two events a and b in a system,
either:  a→b     or    b→a     or    a || b
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Lamport’s Logical Clocks

n To implement “→” in a distributed
system, Lamport (1978) introduced the
concept of logical clocks, which captures
“→” numerically

n Each process Pi has a logical clock Ci

n Clock Ci can assign a value Ci (a) to any
event a in process Pi

● The value Ci (a) is called the timestamp
of event a in process Pi

● The value C(a) is called the timestamp of
event a in whatever process it occurred

n The timestamps have no relation to
physical time, which leads to the term
logical clock

● The logical clocks assign monotonically
increasing timestamps, and can be
implemented by simple counters
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Conditions Satisfied by the
Logical Clocks

n Clock condition:  if a→b,
then C(a)<C(b)

● If event a happens before event b, then
the clock value (timestamp) of a should
be less than the clock value of b

● Note that we can not say:  if C(a)<C(b),
then a→b

n Correctness conditions (must be
satisfied by the logical clocks to meet the
clock condition above):

[C1] For any two events a and b in the
same process Pi , if a happens
before b, then Ci (a) < Ci (b)

[C2] If event a is the event of sending
a message m in process Pi ,
and event b is the event of receiving
that same message m in a different
process Pk, then Ci (a) < Ck (b)
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Implementation of Logical Clocks

n Implementation Rules (guarantee that
the logical clocks satisfy the correctness
conditions):

[IR1] Clock Ci must be incremented
between any two successive events
in process Pi :

Ci := Ci + d     (d>0) (usually d=1)

[IR2] If event a is the event of sending
a message m in process Pi ,
then message m is assigned a
timestamp tm =Ci (a)

When that same message m is
received by a different process Pk,
Ck is set to a value greater than or
equal to its present value, and
greater than tm :

Ck := max(Ck , tm + d )
     (d>0) (usually d=1)
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Example of Logical Clocks

n Updating logical clocks using Lamport’s
method:

“enn” is event; “(n)” is clock value

n Notes:

● Clocks initially 0, d=1

● Most clocks incremented due to IR1

● Sends e12, e22, e16, and e24 use IR1

● Receives e23, e15, and e17 set to Ck

● Receive e25 sets to tm +d = 6+1 = 7
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Obtaining a Total Ordering
Using Logical Clocks

n The happened before relationship “→”
defines an irreflexive partial order
among events

n A total order of events (“⇒ ”) can be
obtained as follows:

● If a is any event in process Pi , and b is
any event in process Pk , then a ⇒ b if and
only if either:

Ci (a) < Ck (b) or

Ci (a) = Ck (b)  and  Pi  << Pk

where “<<“ denotes a relation that totally
orders the processes to break ties
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Limitation of Logical Clocks

n With Lamport’s logical clocks, if a→b,
then C(a) < C(b)

● The following is not necessarily true if
events a and b occur in different
processes:  if C(a) < C(b), then a→b

n Example illustrating this limitation:

● C(e11) < C(e22), and e11→e22  is true

● C(e11) < C(e32), but e11→e32  is false

åCannot determine whether two events
are causally related from timestamps
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Vector Clocks

n Independently proposed by Fidge and by
Mattern in 1988

n Vector clocks:

● Assume system contains n processes

● Each process Pi  has a clock Ci , which is
an integer vector of length n

Ci = (Ci [1], Ci [2], … Ci [n] )

● Ci (a) is the timestamp (clock value) of
event a at process Pi

● Ci [i](a), entry i of of Ci , is Pi ’s logical
time

● Ci [k](a), entry k of of Ci (where k≠i ), is
 Pi ’s best guess of the logical time at Pk

n More specifically, the time of the
occurrence of the last event in Pk which
“happened before” the current event in Pi
(based on messages received)
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Implementation of Vector Clocks

n Implementation Rules:

[IR1] Clock Ci must be incremented
between any two successive events
in process Pi :

Ci [i]:= Ci [i] + d     (d>0, usually d=1)

[IR2] If event a is the event of sending
a message m in process Pi ,
then message m is assigned a
vector timestamp tm =Ci (a)

When that same message m is
received by a different process Pk ,
Ck is updated as follows:

∀ p, Ck [p]:= max(Ck [p], tm [p] + d )
 (usually d=0 unless needed to model

network delay)

n It can be shown that ∀ i, ∀ k : Ci [i] ≥ Ck [i]
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Implementation of Vector Clocks
(cont.)

n Rules for comparing timestamps can also
be established so that if ta < tb , then a→b

● ta = tb iff  for all i, ta[i] = tb[i]

● ta <> tb iff  for any i, ta[i] <> tb[i]

● ta <= tb iff  for all i, ta[i] <= tb[i]
(each one equal or less)

● ta < tb iff ta <= tb and ta <> tb
(some (but not all) equal, some less)

● Solves the problem with Lamport’s clocks

n Examples:

● 1 1 2 3 = 1 1 2 3

● 1 1 2 3 <> 1 1 2 4

● 1 1 2 3 <= 1 1 2 4     1 1 2 3 <= 1 1 2 3

● 1 1 2 3 < 1 1 2 4
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Example of Vector Clocks

n Updating vector clocks:

“enn” is event; “(n,n,n)” is clock value

n Notes:

● Events e11, e21, and e12 updated by IR1

● Receive e22 updated by IR1 and IR2

● Receive e13 tells P1 about P2 and P3
(P3 clock is old, but better than nothing!)
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