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Synchronization / Mutual Exclusion
in a Centralized Environment

n User programs threads to explicitly
coordinate with each other

● Dijkstra’s Algorithm 1, 2, and 3

● Dekker’s Algorithm, Peterson’s Algorithm

n OS provides support

● Semaphores

● Locks and condition variables

● Monitors

● Critical regions, path expressions, etc.

n Architectural support can make
implementation easier

● Interrupts

● Atomic read-modify-write instructions
n Test-and-set
n Swap
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Dijkstra’s Algorithms for
Cooperating Processes (1965)

Algorithm 1 (Both Processes Shown)

process1 ( )  {  process2 ( )  {
while (1)  {  while (1)  {

while (turn != 1)  while (turn != 2)
; /* do nothing */  ; /* do nothing */

…critical section…  … critical section…
turn = 2;  turn = 1;
…non-critical code… …non-critical code…

}  }
} }

Algorithm 2- (1 Process) Algorithm 2 (1 Process)

process1 ( )  {  process1 ( )  {
while (1)  {  while (1)  {

while (p2InCS)  p1InCS = true;
; /* do nothing */  while (p2InCS)

p1InCS = true; ; /* nothing */
…critical section…  … critical section…
p1InCS = false; p1InCS = false;
…non-critical code… …non-critical …

}  }
} }
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Peterson’s Algorithm (1981)

process1 ( )  {
while (1)  {

interested[1] = true;
turn = 2;
while (interested[2] && turn==2)

; /* do nothing */
…critical section…
interested[1] = false;
…non-critical code…

}
}

nOperation:

● interested[i]==true indicates process i  is
interested in getting into the critical section

● turn is used to break ties
n Each insists it’s the other’s turn
n Since memory write is atomic, even if both

processes are almost in lock-step, one will
succeed in insisting the other go first
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Lamport’s Bakery Algorithm
(For n  Processes)  (1974)

process-i ( )  {
while (1)  {

choosing_num[i] = true;
num[i] =

max(num[0], num[1], … , num[n–1]) + 1;
choosing_num[i] = false;

for ( k=0  ;  k < n–1  ;  k++)  {
while (choosing[k])

; /* do nothing */
while (   (num[k] != 0)   &&

( (num[k] < num[i])  ||
  (num[k] == num[i]  &&  k < i) )   )
; /* do nothing */

…critical section…

num[i] = 0;

…non-critical code…
}

}
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Mutual Exclusion
in a Distributed Environment

n Mutual exclusion

● Centralized algorithms
n Central physical clock

n Central coordinator

● Distributed algorithms
n Time-based event ordering

– Lamport’s algorithm               (logical clocks)
– Ricart & Agrawala’s algorithm      (  "      "    )

– Suzuki & Kasimi’s algorithm       (broadcast)

n Token passing
– Le Lann’s token-ring algorithm (logical ring)
– Raymond’s tree algorithm        (logical tree)

n Sharing K identical resources
– Raymond’s extension to Ricart &

Agrawala’s time-based algorithm

● Atomic transactions          (later in course)

n Related — self-stabilizing algorithms,
election, agreement, deadlock
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Mutual Exclusion in a Distributed
Environment — General Requirements

n N processes share a single resource, and
require mutually-exclusive access

n Conditions to satisfy:

● A process holding the resource must
release it before it can be granted to
another process

● Requests for the resource must be
granted in the order in which they’re made

● If every process granted the resource
eventually releases it, then every request
will be eventually granted

n Assumptions made:

● Messages between two processes are
received in the order they are sent

● Every message is eventually received

● Each process can send a message to any
other process

7 Spring 1999, Lecture 14

Central Physical Clock

n Provide a single central physical clock,
just like in a centralized system

● Processes request physical timestamps
from this clock and use them to order
events

✔ Advantages:

● Simplicity

8Disadvantages:

● Clock must always be available to provide
the requested timestamps

● Transmission errors can prevent the
proper ordering from taking place

● An accurate estimation of transmission
delays is required

● The degree of accuracy may not be as
high as desired
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Central Coordinator

n To enter the critical section, a thread
sends a request  message to the central
coordinator, and waits for a reply

n When the coordinator receives a request:

● If no other thread is in the critical section,
it sends back a reply  message

● If another thread is in the critical section,
the coordinator adds the request to the
tail of its queue, and does not respond

n When the requesting thread receives the
reply  message from the coordinator, it
enters the critical section

● When it leaves the critical section, it
sends a release  message to coordinator

● When the coordinator receives a release
message, it removes the request from the
head of the queue, and sends a reply
message to that thread
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Central Coordinator
(cont.)

n Evaluation:

● 3 messages required to enter CS
n release, request, reply

✘ Coordinator is a performance bottleneck

✘ Coordinator is a single point of failure

✘ Delay is unconstrained
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Lamport’s Algorithm (1978)

n Each process maintains a request
queue, ordered by timestamp value

n Requesting the critical section (CS):

● When a thread wants to enter the CS, it:
n Adds the request to its own request queue

n Sends a timestamped request  message
to all threads in that CS’s request set

● When a thread receives a request
message, it:
n Adds the request to its own request queue

n Returns a timestamped reply  message

n Executing the CS:

● A thread enters the CS when both:
n Its own request is at the top of its own

request queue (its request is earliest)

n It has received a reply  message with a
timestamp larger than its request from all
other threads in the request set
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Lamport’s Algorithm (cont.)

n Releasing the CS:

● When a thread leaves the CS, it:
n Removes its own (satisfied) request from

the top of its own request queue

n Sends a timestamped release  message
to all threads in the request set

● When a thread receives a release
message, it:
n Removes the (satisfied) request from its

own request queue
n (Perhaps raising its own message to the

top of the queue, enabling it to finally enter
the CS)

n Evaluation:

● 3(N–1) messages required to enter CS
n (N–1) release, (N–1) request, (N–1) reply

✘ Later…
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Lamport’s Algorithm (cont.)

n Both threads 0 and 2 request the CS:

n Everyone replies, thread 0 enters the CS
since its request was first:
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Lamport’s Algorithm (cont.)

n Thread 0 releases the CS, thread 2
enters it:

0

1

2

release
20 20

release

2

2

2


