Mutual Exclusion
in a Distributed Environment (Review)

m Mutual exclusion

¢ Centralized algorithms
m Central physical clock
m Central coordinator

¢ Distributed algorithms
m Time-based event ordering
— Lamport’s algorithm (logical clocks)
— Ricart & Agrawala’s algorithm (" " )
— Suzuki & Kasimi’s algorithm (broadcast)
m Token passing
— Le Lann’s token-ring algorithm (logical ring)
— Raymond’s tree algorithm (logical tree)
m Sharing K identical resources

— Raymond’s extension to Ricart &
Agrawala’s time-based algorithm

e Atomic transactions (later in course)

m Related — self-stabilizing algorithms,
election, agreement, deadlock

Spring 1999, Lecture 15

Ricart and Agrawala’s Algorithm
(1981)

m Requesting the critical section (CS):

¢ When a thread wants to enter the CS, it:

m Sends a timestamped request message to
all threads in that CS’s request set

e When a thread receives a request
message:

m If it is neither requesting nor executing the
CS, it returns a reply message

m If it is requesting the CS, but the
timestamp on the incoming request is
smaller than the timestamp on its own
request, it returns a reply message

— Means the other thread requested first

m Otherwise, it defers answering the request

m Executing the CS:

e A thread enters the CS when:

m It has received a reply message from all
other threads in the request set

Spring 1999, Lecture 15

Ricart and Agrawala’s Algorithm
(cont.)

m Releasing the CS:

¢ When a thread leaves the CS, it:

m Sends a reply message to all the deferred
requests

m (Thread with next earliest request will now
received its last reply message and enter
the CS)

m Evaluation:
e 2(N-1) messages required to enter CS
m (N-1) reply, (N-1) request
m Evaluation (Lamport, Ricart & Agawala):

L] Distributed performance bottleneck

[JNow N points of failure

m If a thread crashes, it fails to reply, which
is interpreted as a denial of permission to
enter the CS, so everyone waits...

(] Need up-to-date group communication

Spring 1999, Lecture 15

Ricart and Agrawala’s Algorithm
(cont.)

m Both threads 0 and 2 request the CS:

request
12

request
12

m Threads 1 and 2 reply, thread O defers
and enters the CS since its request was

first: @

m After leaving the CS, thread O replies to
thread 2, which enters the CS

Spring 1999, Lecture 15




Raymond’s Extension For Sharing K
Identical Resources (1987)

m K identical resources, which must be
shared among N processes

m Raymond’s extension to Ricart and
Agrawala’s algorithm:

e A process can enter the CS as soon as it
has received N-K reply messages

e Algorithm is generally the same as R&A,
with one difference:
m R&A — reply messages arrive only when
process is waiting to enter CS
m Raymond —

— N—K reply messages arrive when process
is waiting to enter CS

— Remaining K-1 reply messages can
arrive when process is in the CS, after it
leaves the CS, or when it's waiting to enter
the CS again

— Must keep a count of number of
outstanding reply messages, and not
count those toward next set of replies

Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (1985)

m Overview:

¢ If a thread wants to enter the critical
section, and it does not have the token, it
broadcasts a request message to all
other sites in the token’s request set

e The thread that has the token will then
send it to the requesting thread

m However, if it's in the critical section, it
gets to finish before sending the token

¢ A thread holding the token can
continuously enter the critical section until
the token is requested

e Request vector at thread i :

m RN;[A] contains the largest sequence
number received from thread kin a
request message

e Token consists of vector and a queue:

m LN[K] contains the sequence number of
the latest executed request from thread k

m Q is the queue of requesting thread

Spring 1999, Lecture 15

Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

m Requesting the critical section (CS):

¢ When a thread / wants to enter the CS, if
it does not have the token, it:
m Increments its sequence number sn and
its request vector RN, [] to RN, []+1

m Sends a request message containing new
sn to all threads in that CS’s request set

e When a thread k receives the request
message, it:
m Sets RN, [] to MAX(RN, [, sn received)
— If sn < RN, [1], the message is outdated

m If thread k has the token and is not in the
CS (i.e., is not using it),
and if RN, [/] == LN[/+1 (indicating an

outstanding request)

it sends the token to thread i

m Executing the CS:

¢ A thread enters the CS when it has
acquired the token

7 Spring 1999, Lecture 15

Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

m Releasing the CS:

¢ When a thread i leaves the CS, it:

m Sets LN[/] of the token equal to RN; [/]

— Indicates that its request RN, []] has been
executed

m For every thread kwhose ID is not in the
token queue Q, it appends its ID to Q if
RN, [{ == LN[K]+1

— Indicates that thread k has an outstanding
request

m If the token queue Q is nonempty after this
update, it deletes the thread ID at the
head of Q and sends the token to that
thread

— Gives priority to others’ requests
— Otherwise, it keeps the token

m Evaluation:

e 0to N messages required to enter CS
m No messages if thread holds the token
m Otherwise N-1 requests, 1 reply

Spring 1999, Lecture 15




Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

SN
RN Thread 0 decides it wants
to get into the CS
SN
SN @ RN[o]o]o]
RN @
Token
LN
o I1]
SN Thread 0 updates its SN
RN and request vector RN, and

sends its new SN to others

SN
. RN[1]o]o]
RN -1
Token Thr‘eads 1 and 2 update
their RNs with new SN
LN received from Thread 0.
Thread 1 has the token,
Q D] but is not currently using it,

so it sends it to Thread 0.

Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

Thread 0 now has the token,

Token
and is actively using it, when
LN requests come in from Thread
1, then Thread 2.
Q ]:D Thread 0 doesn't do
anything with those
SN requests yet, but it
RN ﬂﬂ remembers them.
SN
SN ORE o]
RN[1]1[0]
Tok When Thread O leaves CS, it
oxen updates LN to indicate that
LN um the request has been satisfied.
Then it adds Threads
Q 1 and 2 to the token
queue Q. Finally, it deletes
SN Thread 1 from the head of
RN[1]o]0] Q and sends it the token.
SN
SN @ RN[1]0]1]
RN[1]1[0]
10 Spring 1999, Lecture 15

o] 4

11

Suzuki and Kasami’'s Broadcast
Algorithm (cont.)

SN
RN[1]o]o]

SN
SN © RN[1]0]1]
Thread 1 now has the token,

Token and can enter the CS.

When it finishes, it will send the
token to Thread 2 (after adding
any new requests to the end of

N[1]o]o]
Q

the token queue Q).

Spring 1999, Lecture 15

Token-Ring Algorithm
(Le Lann, 1977 ?)

m Processes are arranged in a logical ring

m At start, process 0 is given a token

e Token circulates around the ring in a fixed
direction via point-to-point messages

e When a process acquires the token, it
has the right to enter the critical section
m After exiting CS, it passes the token on

m Evaluation:
e N-1 messages required to enter CS
¢ Not difficult to add new processes to ring

¢ With unidirectional ring, mutual exclusion
is fair, and no process starves

[] Not very fault-tolerant
[] Difficult to detect when token is lost

[1 Doesn’'t guarantee “happened-before”
order of entry into critical section

12 Spring 1999, Lecture 15




Raymond’s Tree Algorithm
(1989)

Tl

(o)
odie
efofoge

e Threads are arranged as a logical tree

m Edges are directed toward the thread that
holds the token (called the “holder”, initially
the root of tree)

m Overview:

e Each thread has:

m A variable holder that points to its neighbor
on the directed path toward the holder of
the token

m A FIFO queue called request g that holds
its requests for the token, as well as any
requests from neighbors that have
requested but haven’t received the token

— If request_q is non-empty, that implies the
node has already sent the request at the
head of its queue toward the holder

13 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

m Requesting the critical section (CS):

¢ When a thread wants to enter the CS, but
it does not have the token, it:
m Adds its request to its request g

m If its request_qg was empty before the
addition, it sends a request message
along the directed path toward the holder

— If the request_q was not empty, it's
already made a request, and has to wait
e When a thread in the path between the
requesting thread and the holder receives
the request message, it
m < same as above >

o When the holder receives a request
message, it
m Sends the token (in a message) toward
the requesting thread

m Sets its holder variable to point toward that
thread (toward the new holder)

14 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

m Requesting the CS (cont.):

e When a thread in the path between the
holder and the requesting thread receives
the token, it

m Deletes the top entry (the most current
requesting thread) from its request q

m Sends the token toward the thread
referenced by the deleted entry, and sets
its holder variable to point toward that
thread

m If its request_q is not empty after this
deletion, it sends a request message
along the directed path toward the new
holder (pointed to by the updated holder
variable)

m Executing the CS:

e Athread can enter the CS when it
receives the token and its own entry is at
the top of its request_q

m It deletes the top entry from the request g,
and enters the CS

15 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

m Releasing the CS:

¢ When a thread leaves the CS

m If its request g is not empty (meaning a
thread has requested the token from it), it:
— Deletes the top entry from its request_q
— Sends the token toward the thread
referenced by the deleted entry, and sets
its holder variable to point toward that
thread
m If its request_g is not empty after this
deletion (meaning more than one thread
has requested the token from it), it sends
a request message along the directed
path toward the new holder (pointed to by
the updated holder variable)

m Evaluation:

[0 On average, O(log N) messages required
to enter CS

m Average distance between any two nodes
in a tree with N nodes is O(log N)

16 Spring 1999, Lecture 15




Raymond’s Tree Algorithm
(cont.)

Tl T1

T2 T3 T2 regd T3

T4 T5 T6 T7 T7

6 loka T3 ]:D T2 T3

=g § =0

T4 T5 T6 T7 T4 T5 T6 T7
T1
T2 ,9 ; T3
T4 T5 T6 T7
enters CS

17 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

Tl T1
6/"9(]{ T3

o% 6 S

T4 T5 T6 T7 T4 T5 T6 T7

Tl T1

T2 T3

RS

T4 T5 T6 T7 T4 T5 T6 T7

Tl T1

. T2 T3 . T3
tok4 5 5
foxe] lone]
T4 T5 T6 T7 T4 T5 T6 T7
enters CS
18 Spring 1999, Lecture 15




