
1 Spring 1999, Lecture 15

Mutual Exclusion
in a Distributed Environment (Review)

n Mutual exclusion

● Centralized algorithms
n Central physical clock

n Central coordinator

● Distributed algorithms
n Time-based event ordering

– Lamport’s algorithm (logical clocks)
– Ricart & Agrawala’s algorithm (" ")

– Suzuki & Kasimi’s algorithm (broadcast)

n Token passing
– Le Lann’s token-ring algorithm (logical ring)
– Raymond’s tree algorithm (logical tree)

n Sharing K identical resources
– Raymond’s extension to Ricart &

Agrawala’s time-based algorithm

● Atomic transactions (later in course)

n Related — self-stabilizing algorithms,
election, agreement, deadlock

2 Spring 1999, Lecture 15

Ricart and Agrawala’s Algorithm
(1981)

n Requesting the critical section (CS):

● When a thread wants to enter the CS, it:
n Sends a timestamped request message to

all threads in that CS’s request set

● When a thread receives a request
message:
n If it is neither requesting nor executing the

CS, it returns a reply message

n If it is requesting the CS, but the
timestamp on the incoming request is
smaller than the timestamp on its own
request, it returns a reply message

– Means the other thread requested first

n Otherwise, it defers answering the request

n Executing the CS:

● A thread enters the CS when:
n It has received a reply message from all

other threads in the request set

3 Spring 1999, Lecture 15

Ricart and Agrawala’s Algorithm
(cont.)

n Releasing the CS:

● When a thread leaves the CS, it:
n Sends a reply message to all the deferred

requests

n (Thread with next earliest request will now
received its last reply message and enter
the CS)

n Evaluation:

● 2(N–1) messages required to enter CS
n (N–1) reply, (N–1) request

n Evaluation (Lamport, Ricart & Agawala):

✘ Distributed performance bottleneck

✘ Now N points of failure
n If a thread crashes, it fails to reply, which

is interpreted as a denial of permission to
enter the CS, so everyone waits…

✘ Need up-to-date group communication

4 Spring 1999, Lecture 15

Ricart and Agrawala’s Algorithm
(cont.)

n Both threads 0 and 2 request the CS:

n Threads 1 and 2 reply, thread 0 defers
and enters the CS since its request was
first:

n After leaving the CS, thread 0 replies to
thread 2, which enters the CS

0

1

2

request
8 8

request
request

12

request
12

0

1

2
reply
14

reply
13

reply
17

5 Spring 1999, Lecture 15

Raymond’s Extension For Sharing K
Identical Resources (1987)

n K identical resources, which must be
shared among N processes

n Raymond’s extension to Ricart and
Agrawala’s algorithm:

● A process can enter the CS as soon as it
has received N–K reply messages

● Algorithm is generally the same as R&A,
with one difference:
n R&A — reply messages arrive only when

process is waiting to enter CS

n Raymond —
– N–K reply messages arrive when process

is waiting to enter CS

– Remaining K–1 reply messages can
arrive when process is in the CS, after it
leaves the CS, or when it’s waiting to enter
the CS again

– Must keep a count of number of
outstanding reply messages, and not
count those toward next set of replies

6 Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (1985)

n Overview:

● If a thread wants to enter the critical
section, and it does not have the token, it
broadcasts a request message to all
other sites in the token’s request set

● The thread that has the token will then
send it to the requesting thread
n However, if it’s in the critical section, it

gets to finish before sending the token

● A thread holding the token can
continuously enter the critical section until
the token is requested

● Request vector at thread i :
n RNi [k] contains the largest sequence

number received from thread k in a
request message

● Token consists of vector and a queue:
n LN[k] contains the sequence number of

the latest executed request from thread k
n Q is the queue of requesting thread

7 Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

n Requesting the critical section (CS):

● When a thread i wants to enter the CS, if
it does not have the token, it:
n Increments its sequence number sn and

its request vector RNi [i] to RNi [i]+1

n Sends a request message containing new
sn to all threads in that CS’s request set

● When a thread k receives the request
message, it:
n Sets RNk [i] to MAX(RNk [i], sn received)

– If sn < RNk [i], the message is outdated

n If thread k has the token and is not in the
CS (i.e., is not using it),
and if RNk [i] == LN[i]+1 (indicating an

outstanding request)
it sends the token to thread i

n Executing the CS:

● A thread enters the CS when it has
acquired the token

8 Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

n Releasing the CS:

● When a thread i leaves the CS, it:
n Sets LN[i] of the token equal to RNi [i]

– Indicates that its request RNi [i] has been
executed

n For every thread k whose ID is not in the
token queue Q, it appends its ID to Q if
RNi [k] == LN[k]+1

– Indicates that thread k has an outstanding
request

n If the token queue Q is nonempty after this
update, it deletes the thread ID at the
head of Q and sends the token to that
thread

– Gives priority to others’ requests
– Otherwise, it keeps the token

n Evaluation:

● 0 to N messages required to enter CS
n No messages if thread holds the token
n Otherwise N–1 requests, 1 reply

9 Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2

0 0 0LN

Q

Token

0 0 0RN

0 0 0RN

0 0 0RN

0

1

2

0 0 0LN

Q

Token

1 0 0RN

1 0 0RN

1 0 0RN
SN

SN

SN

Thread 0 updates its SN
and request vector RN, and
sends its new SN to others

Threads 1 and 2 update
their RNs with new SN
received from Thread 0.
Thread 1 has the token,
but is not currently using it,
so it sends it to Thread 0.

SN

SN

SN

Thread 0 decides it wants
to get into the CS

10 Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2
1 1 0RN

1 0 1RN

1 0 0RN
SN

SN

SN

0 0 0LN

Q

Token

Thread 0 doesn't do
anything with those
requests yet, but it
remembers them.

Thread 0 now has the token,
and is actively using it, when
requests come in from Thread
1, then Thread 2.

0

1

2
1 1 0RN

1 0 1RN

1 0 0RN
SN

SN

SN

1 0 0LN

Q

Token

Then it adds Threads
1 and 2 to the token
queue Q. Finally, it deletes
Thread 1 from the head of
Q and sends it the token.

When Thread 0 leaves CS, it
updates LN to indicate that
the request has been satisfied.

12

11 Spring 1999, Lecture 15

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

0

1

2
1 1 0RN

1 0 1RN

1 0 0RN
SN

SN

SN

1 0 0LN

Q

Token

2

Thread 1 now has the token,
and can enter the CS.
When it finishes, it will send the
token to Thread 2 (after adding
any new requests to the end of
the token queue Q).

12 Spring 1999, Lecture 15

Token-Ring Algorithm
(Le Lann, 1977 ?)

n Processes are arranged in a logical ring

n At start, process 0 is given a token

● Token circulates around the ring in a fixed
direction via point-to-point messages

● When a process acquires the token, it
has the right to enter the critical section
n After exiting CS, it passes the token on

n Evaluation:

● N–1 messages required to enter CS

● Not difficult to add new processes to ring

● With unidirectional ring, mutual exclusion
is fair, and no process starves

✘ Not very fault-tolerant

✘ Difficult to detect when token is lost

✘ Doesn’t guarantee “happened-before”
order of entry into critical section

13 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(1989)

n Overview:

● Threads are arranged as a logical tree
n Edges are directed toward the thread that

holds the token (called the “holder”, initially
the root of tree)

● Each thread has:
n A variable holder that points to its neighbor

on the directed path toward the holder of
the token

n A FIFO queue called request_q that holds
its requests for the token, as well as any
requests from neighbors that have
requested but haven’t received the token

– If request_q is non-empty, that implies the
node has already sent the request at the
head of its queue toward the holder

T1

T5T4 T7T6

T3T2

14 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

n Requesting the critical section (CS):

● When a thread wants to enter the CS, but
it does not have the token, it:
n Adds its request to its request_q
n If its request_q was empty before the

addition, it sends a request message
along the directed path toward the holder

– If the request_q was not empty, it’s
already made a request, and has to wait

● When a thread in the path between the
requesting thread and the holder receives
the request message, it
n < same as above >

● When the holder receives a request
message, it
n Sends the token (in a message) toward

the requesting thread
n Sets its holder variable to point toward that

thread (toward the new holder)

15 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

n Requesting the CS (cont.):

● When a thread in the path between the
holder and the requesting thread receives
the token, it
n Deletes the top entry (the most current

requesting thread) from its request_q
n Sends the token toward the thread

referenced by the deleted entry, and sets
its holder variable to point toward that
thread

n If its request_q is not empty after this
deletion, it sends a request message
along the directed path toward the new
holder (pointed to by the updated holder
variable)

n Executing the CS:

● A thread can enter the CS when it
receives the token and its own entry is at
the top of its request_q
n It deletes the top entry from the request_q,

and enters the CS
16 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

n Releasing the CS:

● When a thread leaves the CS
n If its request_q is not empty (meaning a

thread has requested the token from it), it:
– Deletes the top entry from its request_q
– Sends the token toward the thread

referenced by the deleted entry, and sets
its holder variable to point toward that
thread

n If its request_q is not empty after this
deletion (meaning more than one thread
has requested the token from it), it sends
a request message along the directed
path toward the new holder (pointed to by
the updated holder variable)

n Evaluation:

✔ On average, O(log N) messages required
to enter CS
n Average distance between any two nodes

in a tree with N nodes is O(log N)

17 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

T1

T5T4 T7T6

T3T2

4
req4

T1

T5T4 T7T6

T3T2

4

tok4
4

T1

T5T4 T7T6

T3T2

4

req4
4

T1

T5T4 T7T6

T3T2

4
tok4

T1

T5T4 T7T6

T3T2

enters CS

18 Spring 1999, Lecture 15

Raymond’s Tree Algorithm
(cont.)

T1

T5T4 T7T6

T3T2

4
req4

T1

T5T4 T7T6

T3T2

4

tok4
45

5

T1

T5T4 T7T6

T3T2

4

req4
4

T1

T5T4 T7T6

T3T2

4
tok4

req5

5

5

T1

T5T4 T7T6

T3T2

enters CS

5

5

5

T1

T5T4 T7T6

T3T2

4

4

5req5

