Introduction to
Self-Stabilization

Mikhail Nesterenko
Kent State University

artwork reproduced with the permission of Ted Herman, University of lowa

The Definition of Self-Stabilization

Distributed system is self-stabilizing wrt the set of
legitimate states if, regardless of the initial state, it
is guaranteed to eventually arrive at a legitimate
state and never leave the set of legitimate states
after that.

SS distributed system:
e does not need to be initialized
e recovers from transient failures (local state corruption,
message loss, etc.)
e adapts to changes in system’s topology (if topology is
considered part of the state)
On the other hand:
¢ SS system does not guarantee correct execution during
recovery

Guarded Command Language (GCL)

. e *[...] - execution repeats forever
[e guard, - binary predicate on local vars,
guard 4 command received messages, etc.;
e command,- list of assignment state-
ments;
command is executed when
] corresponding guard is true;

guards are selected nondeter-
menistically,

[lguard . command-

Advantages:

¢ GCL allows to easily reason about algorithms and their
executions: the program counter position is irrelevant or less
important;

e we don’t have to consider execution starting in the middle of guard
or command (serializability property); 3

Dijkstra’s K-State Token
Circulation Algorithm

*the system consists of a ring of K

Objective: circulate a processors (ids 0 through K-1)

single token among

DrOCessors *each processor maintains a state

variable s; a processor can see the

state of it’s left (smaller id) neighbor
Processor po

I eguard evaluates to true - processor
so=sk ¢ so:=(so+1)mod K | has a privilege (token)

]

+all processors evaluate their guards,
only one at a time changes state

Processor pi (0 <i<K) (C-Daemon)

[
Si?si-14 Sii=si-1 -after the state change all processors
] re-evaluate the guards

4

processor p
%

receive ack (i) ¢
if i = ns then
ns =1 ns
ms = get()
send data (ms,ns)
[ltimeout &
send data (ms,ns)

processor ¢
%

receive data (m,i) ¢
put (m)
send ack (i)

Alternating Bit Protocol

The objective is to transmit data reliably
from sender node to receiver node
unreliable channel

processor p - sender

processor ¢ - receiver

two types of messages: data and ack

ns - boolean sequence number (sn) of data last sent
ms - last message sent

get() - returns the next message to be sent

put() - delivers received message

timeout - enabled when both channels empty

problems:

*does not work if messages are present in the
channel initially

*hard to estimate the length of the timeout

processor p
%

receive ack (i) ¢
if i = ns then
ns:=ns +1
ms := get()
send data (ms,ns)
[ltimeout &
send data (ms,ns)

EI‘OCCSSOI’ q

receive data (m,i) ¢
if i ? nr then
put (m)
nri=i
send ack (i)

SS Bounded Alternating
Bit Protocol

The objective is to transmit data reliably
from sender node to receiver node over
bounded (bound=g) unreliable channel

processor p - sender

processor ¢ - receiver

two types of messages: data and ack

ns - sequence number(sn) of data last sent
nr - sn of the last correct data

ms - last message sent

get() - returns the next message to be sent
put() - delivers received message

timeout - always enabled

all variables are bounded,
bound B is set to be greater than 2g.
addition is done modulo B

