
Introduction to
Self-Stabilization

Mikhail Nesterenko
Kent State University

artwork reproduced with the permission of Ted Herman, University of Iowa

2

The Definition of Self-Stabilization

Distributed system is self-stabilizing wrt the set of
legitimate states if, regardless of the initial state, it
is guaranteed to eventually arrive at a legitimate
state and never leave the set of legitimate states
after that.
SS distributed system:

l does not need to be initialized
l recovers from transient failures (local state corruption,

message loss, etc.)
l adapts to changes in systemÕs topology (if topology is

considered part of the state)
On the other hand:

l SS system does not guarantee correct execution during
recovery

3

Guarded Command Language (GCL)

l *[É] - execution repeats forever
l guardi - binary predicate on local vars,

 received messages, etc.;
l commandi - list of assignment state-

 ments;
command is executed when

corresponding guard is true;
guards are selected nondeter-

menistically,

]

[]

[*

22

11

M

commandguard

commandguard

♦
♦

Advantages:

l GCL allows to easily reason about algorithms and their
executions: the program counter position is irrelevant or less
important;

l we donÕt have to consider execution starting in the middle of guard
or command (serializability property); 4

DijkstraÕs K-State Token
Circulation Algorithm

]
mod)(:

[*
Kssss 00k0

0

1

Processor

+=♦=

ρ

]
:

[*
)

11

0Processor

−− =♦?

≤<(

iiii

i

ssss

Kiρ

¥guard evaluates to true - processor
has a privilege (token)

¥all processors evaluate their guards,
only one at a time changes state
(C-Daemon)

¥after the state change all processors
re-evaluate the guards

Objective: circulate a
single token among
processors

¥the system consists of a ring of K
processors (ids 0 through K-1)

¥each processor maintains a state
variable s; a processor can see the
state of itÕs left (smaller id) neighbor

5

Alternating Bit Protocol

processor p - sender
processor q - receiver
two types of messages: data and ack
ns - boolean sequence number (sn) of data last sent
ms - last message sent
get() - returns the next message to be sent
put() - delivers received message
timeout - enabled when both channels empty

problems:
¥does not work if messages are present in the
channel initially
¥hard to estimate the length of the timeout

]
)(send

)(
),(receive

[*
processor

iack
mput

imdata

q

♦

]
),(send

[]
),(send

():
:
thenif
)(receive

[*
processor

nsmsdata
timeout

nsmsdata
getms
nsns

nsi
iack

p

♦

=
↓=

=
♦

The objective is to transmit data reliably
from sender node to receiver node
unreliable channel

6

SS Bounded Alternating
Bit Protocol

processor p - sender
processor q - receiver
two types of messages: data and ack
ns - sequence number(sn) of data last sent
nr - sn of the last correct data
ms - last message sent
get() - returns the next message to be sent
put() - delivers received message
timeout - always enabled

all variables are bounded,
bound B is set to be greater than 2g.
addition is done modulo B

]
)(send

:
)(
thenif

),(receive
[*
processor

iack
inr

mput
nri

imdata

q

=

?
♦

]
),(send

[]
),(send

():
:
thenif
)(receive

[*
processor

nsmsdata
timeout

nsmsdata
getms

nsns
nsi

iack

p

♦

=
+=

=
♦

1

The objective is to transmit data reliably
from sender node to receiver node over
bounded (bound=g) unreliable channel

