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Agreement

n In a distributed system, it is often
necessary for a set of processors to
reach mutual agreement (consensus)

● Mutual exclusion — agree who has the
right to enter the critical section

● Maintain replicated data, monitor a
distributed computation, detect failed
processors, etc.

● This is one of the most fundamental
problems in distributed system design

n In normal situations, this isn’t a problem

● Exchange values, take average, etc.

● However, this is difficult if the system
contains failures (also called faults)
n Faulty processors can send erroneous

values to other processors

n Faulty network links can prevent values
from reaching other processors
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Adversaries

n One way to think about agreement is to
imagine an all-powerful adversary

● Adversary is a demon with complete
control over the system who will try to
make your algorithm fail

● Adversary knows global system state (but
you can not!) and can arbitrarily
interleave process execution, event
execution, message delivery, etc.

● Adversary can make processors and links
fail at arbitrary times, even intermittently

n You must design an agreement algorithm
that always works

● Can’t say “but that’s highly unlikely!”,
because that’s what the adversary will do
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System Model

n There are N processors in the system
trying to reach agreement

● A subset M of those N processors are
faulty, and others are non-faulty

● Each processor Pi has a value Vi

n To reach agreement, each processor
calculates an agreement value Ai

● Every N–M non-faulty processor
computes the same agreement value Ai

● This Ai does not depend on the value Vi
of any of the faulty processors

● We don’t care what agreement value Ai
the faulty processors compute

n Any processor can communicate directly
with any other processor, and the
communication mechanism is reliable (no
messages are lost or corrupted)
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Processor Failure

n Types of failures (Christian, 1991):

● Omission failure — server doesn’t
respond to a request

● Response failure — server responds
incorrectly to a request
n Returns wrong value, has wrong effect on

resources (e.g., sets wrong values)

● Timing failure — server responds too late
(e.g., it’s overloaded) or too early

● Crash failure — repeated omission
failure; server repeatedly fails to respond
to requests until it is restarted
n Amnesia crash — restarts in initial state
n Pause crash — … in state before crash

n Halting crash — never restarts

n A failure that exhibits all of the above is
called Byzantine failure (Lamport, 1982)

● Goal: system should function correctly!
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Byzantine Generals Problem

n There is one general, and N–1
lieutenants

● The general gives an order “attack” or
“retreat” to the lieutenants

● The general and the lieutenants are either
“loyal” or “traitors”
n A traitor may act maliciously to prevent

agreement

n Goal:  to reach agreement:

● All loyal lieutenants should agree on the
order to perform

● If the general is loyal, then every order
the loyal lieutenants agree on should be
the order he sent

● Even if the general is a traitor, the loyal
lieutenants should agree with each other

● It is irrelevant what order the traitorous
officers want to perform
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1 General, 2 lieutenants
(1 Traitor, 2 Loyal)

n What if a lieutenant is a traitor?

● Solution:  assume the general is loyal

n But — what if the general is the traitor?

● If each lieutenant assumes the general is
loyal, they can’t reach agreement

n 3 processors can not reach agreement in
the presence of a single faulty processor

General

Lieutenant1 Lieutenant2

attack attack

attack

retreat

General

Lieutenant1 Lieutenant2

attack retreat

attack

retreat
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Lamport, Shostak, and Pease’s
Oral Message Algorithm (1982)

n Solves the Byzantine Generals problem
for 3M+1 officers, with at most M traitors

n Officers can send “oral” (non-
authenticated) messages:

● Every officer can send a message to
every other officer
n But the officer may modify a received

message before sending it on, or may
forge a message from another officer

● Every message that it sent is delivered
correctly (i.e., no messengers captured)
n The receiver of a message knows who

sent it, and the absence of a message can
be detected (communicate in “rounds”)

n Other assumptions:

● A traitorous general may or may not send
a message

● A lieutenant’s default order is “retreat”
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Lamport, Shostak, and Pease’s
Oral Message Algorithm (cont.)

n Solves the Byzantine Generals problem
for 3M+1 officers, with at most M traitors

n Algorithm for 4 officers, at most 1 traitor:

● General sends order to each lieutenant

● A lieutenant’s initial order is the value
received from the general, or “retreat” if
no order was received

● Each lieutenant sends his initial order to
all the other lieutenants

● Each lieutenant’s final order is the
majority of 3 orders it received (1 from the
general, 1 from each of the 2 lieutenants)
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1 General, 3 lieutenants
(1 Traitor, 3 Loyal)

n What if a lieutenant is a traitor?

n What if the general is the traitor?

n 4 processors can reach agreement in the
presence of a single faulty processor

General

Lieutenant1

Lieutenant2

attack attack

attack Lieutenant3

attack

attack attack
attack

retreatretreat

General

Lieutenant1

Lieutenant2

attack attack

attack Lieutenant3

retreat

attack attack
attack

retreatretreat
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Agreement Problems

n Byzantine agreement

● Source processor broadcasts its initial
value to all other processors

● All non-faulty processors must agree on
the same value

● If the source processor is non-faulty, then
the commonly-agreed-upon value of all
the non-faulty processors must be the
initial value of the source

n Consensus

● Every processor broadcasts its initial
value to all other processors

● All non-faulty processors must agree on
the same single value

● If the initial value of every non-faulty
processor is V, then the commonly-
agreed-upon value of all the non-faulty
processors must be V

11 Spring 1999, Lecture 17

Agreement Problems (cont.)

n Interactive Consistency

● Every processor broadcasts its initial
value to all other processors

● All non-faulty processors must agree on
the same vector V = (v1, v2, …, vn)

● If the i-th processor is non-faulty and its
initial value is vi, then the commonly-
agreed-upon value of all the non-faulty
processors for the i-th value must be vi

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995
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Fault-Tolerant
Physical Clock Synchronization

n 3 basic assumptions:

● All clocks are initially synchronized to
approximately the same value

● A non-faulty process’s clock runs at
approximately the correct rate

● A non-faulty process can read the clock
value of another non-faulty clock with at
most a small error

n Interactive Convergence Algorithm:

● Each process reads the value of all other
processes’ clocks, and sets its clock
value to the average of these values
n If a clock value differs from its own clock

by more than δ, it replaces that value by
its own clock value in taking the average

● If the clocks are synchronized often
enough, they will converge to within a
desired degree
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Fault-Tolerant
Physical Clock Synchronization (cont.)

n Interactive Consistency Algorithm:

● Takes median of clock values (instead of
mean)
n Provides a good estimate, since number

of faulty clocks should be low

● Two new conditions:
n Any two processes obtain approximately

the same value for a process P’s clock
(even if process P is faulty)

n If Q is a non-faulty process, then every
non-faulty process obtains approximately
the correct value for process Q’s clock

n Note:  this is agreement!

● Algorithm:
n Use solution to Interactive Consistency

problem to collect clock values for all
clocks

n Set local clock to be median of the
collected clock values


