
1 Spring 1999, Lecture 17

Agreement

n In a distributed system, it is often
necessary for a set of processors to
reach mutual agreement (consensus)

● Mutual exclusion — agree who has the
right to enter the critical section

● Maintain replicated data, monitor a
distributed computation, detect failed
processors, etc.

● This is one of the most fundamental
problems in distributed system design

n In normal situations, this isn’t a problem

● Exchange values, take average, etc.

● However, this is difficult if the system
contains failures (also called faults)
n Faulty processors can send erroneous

values to other processors

n Faulty network links can prevent values
from reaching other processors

2 Spring 1999, Lecture 17

Adversaries

n One way to think about agreement is to
imagine an all-powerful adversary

● Adversary is a demon with complete
control over the system who will try to
make your algorithm fail

● Adversary knows global system state (but
you can not!) and can arbitrarily
interleave process execution, event
execution, message delivery, etc.

● Adversary can make processors and links
fail at arbitrary times, even intermittently

n You must design an agreement algorithm
that always works

● Can’t say “but that’s highly unlikely!”,
because that’s what the adversary will do

3 Spring 1999, Lecture 17

System Model

n There are N processors in the system
trying to reach agreement

● A subset M of those N processors are
faulty, and others are non-faulty

● Each processor Pi has a value Vi

n To reach agreement, each processor
calculates an agreement value Ai

● Every N–M non-faulty processor
computes the same agreement value Ai

● This Ai does not depend on the value Vi
of any of the faulty processors

● We don’t care what agreement value Ai
the faulty processors compute

n Any processor can communicate directly
with any other processor, and the
communication mechanism is reliable (no
messages are lost or corrupted)

4 Spring 1999, Lecture 17

Processor Failure

n Types of failures (Christian, 1991):

● Omission failure — server doesn’t
respond to a request

● Response failure — server responds
incorrectly to a request
n Returns wrong value, has wrong effect on

resources (e.g., sets wrong values)

● Timing failure — server responds too late
(e.g., it’s overloaded) or too early

● Crash failure — repeated omission
failure; server repeatedly fails to respond
to requests until it is restarted
n Amnesia crash — restarts in initial state
n Pause crash — … in state before crash

n Halting crash — never restarts

n A failure that exhibits all of the above is
called Byzantine failure (Lamport, 1982)

● Goal: system should function correctly!

5 Spring 1999, Lecture 17

Byzantine Generals Problem

n There is one general, and N–1
lieutenants

● The general gives an order “attack” or
“retreat” to the lieutenants

● The general and the lieutenants are either
“loyal” or “traitors”
n A traitor may act maliciously to prevent

agreement

n Goal: to reach agreement:

● All loyal lieutenants should agree on the
order to perform

● If the general is loyal, then every order
the loyal lieutenants agree on should be
the order he sent

● Even if the general is a traitor, the loyal
lieutenants should agree with each other

● It is irrelevant what order the traitorous
officers want to perform

6 Spring 1999, Lecture 17

1 General, 2 lieutenants
(1 Traitor, 2 Loyal)

n What if a lieutenant is a traitor?

● Solution: assume the general is loyal

n But — what if the general is the traitor?

● If each lieutenant assumes the general is
loyal, they can’t reach agreement

n 3 processors can not reach agreement in
the presence of a single faulty processor

General

Lieutenant1 Lieutenant2

attack attack

attack

retreat

General

Lieutenant1 Lieutenant2

attack retreat

attack

retreat

7 Spring 1999, Lecture 17

Lamport, Shostak, and Pease’s
Oral Message Algorithm (1982)

n Solves the Byzantine Generals problem
for 3M+1 officers, with at most M traitors

n Officers can send “oral” (non-
authenticated) messages:

● Every officer can send a message to
every other officer
n But the officer may modify a received

message before sending it on, or may
forge a message from another officer

● Every message that it sent is delivered
correctly (i.e., no messengers captured)
n The receiver of a message knows who

sent it, and the absence of a message can
be detected (communicate in “rounds”)

n Other assumptions:

● A traitorous general may or may not send
a message

● A lieutenant’s default order is “retreat”
8 Spring 1999, Lecture 17

Lamport, Shostak, and Pease’s
Oral Message Algorithm (cont.)

n Solves the Byzantine Generals problem
for 3M+1 officers, with at most M traitors

n Algorithm for 4 officers, at most 1 traitor:

● General sends order to each lieutenant

● A lieutenant’s initial order is the value
received from the general, or “retreat” if
no order was received

● Each lieutenant sends his initial order to
all the other lieutenants

● Each lieutenant’s final order is the
majority of 3 orders it received (1 from the
general, 1 from each of the 2 lieutenants)

9 Spring 1999, Lecture 17

1 General, 3 lieutenants
(1 Traitor, 3 Loyal)

n What if a lieutenant is a traitor?

n What if the general is the traitor?

n 4 processors can reach agreement in the
presence of a single faulty processor

General

Lieutenant1

Lieutenant2

attack attack

attack Lieutenant3

attack

attack attack
attack

retreatretreat

General

Lieutenant1

Lieutenant2

attack attack

attack Lieutenant3

retreat

attack attack
attack

retreatretreat

10 Spring 1999, Lecture 17

Agreement Problems

n Byzantine agreement

● Source processor broadcasts its initial
value to all other processors

● All non-faulty processors must agree on
the same value

● If the source processor is non-faulty, then
the commonly-agreed-upon value of all
the non-faulty processors must be the
initial value of the source

n Consensus

● Every processor broadcasts its initial
value to all other processors

● All non-faulty processors must agree on
the same single value

● If the initial value of every non-faulty
processor is V, then the commonly-
agreed-upon value of all the non-faulty
processors must be V

11 Spring 1999, Lecture 17

Agreement Problems (cont.)

n Interactive Consistency

● Every processor broadcasts its initial
value to all other processors

● All non-faulty processors must agree on
the same vector V = (v1, v2, …, vn)

● If the i-th processor is non-faulty and its
initial value is vi, then the commonly-
agreed-upon value of all the non-faulty
processors for the i-th value must be vi

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

12 Spring 1999, Lecture 17

Fault-Tolerant
Physical Clock Synchronization

n 3 basic assumptions:

● All clocks are initially synchronized to
approximately the same value

● A non-faulty process’s clock runs at
approximately the correct rate

● A non-faulty process can read the clock
value of another non-faulty clock with at
most a small error

n Interactive Convergence Algorithm:

● Each process reads the value of all other
processes’ clocks, and sets its clock
value to the average of these values
n If a clock value differs from its own clock

by more than δ, it replaces that value by
its own clock value in taking the average

● If the clocks are synchronized often
enough, they will converge to within a
desired degree

13 Spring 1999, Lecture 17

Fault-Tolerant
Physical Clock Synchronization (cont.)

n Interactive Consistency Algorithm:

● Takes median of clock values (instead of
mean)
n Provides a good estimate, since number

of faulty clocks should be low

● Two new conditions:
n Any two processes obtain approximately

the same value for a process P’s clock
(even if process P is faulty)

n If Q is a non-faulty process, then every
non-faulty process obtains approximately
the correct value for process Q’s clock

n Note: this is agreement!

● Algorithm:
n Use solution to Interactive Consistency

problem to collect clock values for all
clocks

n Set local clock to be median of the
collected clock values

