
1 Spring 1999, Lecture 19

Dealing with Deadlock
(Review)

n The Ostrich Approach — stick your head
in the sand and ignore the problem

n Deadlock avoidance — consider
resources and requests, and only fulfill
requests that will not lead to deadlock

✘ Too hard for centralized systems, even
harder in distributed systems!!

n Deadlock prevention — eliminate one of
the 4 deadlock conditions

n Deadlock detection and recovery —
detect, then break the deadlock

✘ More difficult when state is distributed

● Must avoid reporting false deadlock

á In distributed systems, we typically
assume single resource instances

2 Spring 1999, Lecture 19

Deadlock Detection
in a Distributed Environment (Review)

n Centralized algorithms

● Coordinator maintains global WFG and
searches it for cycles

● Ho and Ramamoorthy’s two-phase and
one-phase algorithms

n Distributed algorithms

● Global WFG, with responsibility for
detection spread over many sites

● Obermarck’s path-pushing

● Chandy, Misra, and Haas’s edge-chasing

n Hierarchical algorithms

● Hierarchical organization, site detects
deadlocks involving only its descendants

● Menasce and Muntz’s algorithm

● Ho and Ramamoorthy’s algorithm

3 Spring 1999, Lecture 19

Distributed Deadlock Detection

n Path-pushing

● WFG is disseminated as paths —
sequences of edges

● Deadlock if process detects local cycle

n Edge-chasing

● Probe messages circulate

● Blocked processes forward probe to
processes holding requested resources

● Deadlock if initiator receives own probe

n Diffusion

● Query messages sent to dependent set

● Active processes discard query, blocked
processes forward query under certain
conditions, reply under other conditions

● Deadlock if initiator receives replies to all
its queries

4 Spring 1999, Lecture 19

Distributed Deadlock Detection
(Obermarck’s Path-Pushing, 1982)

n Individual sites maintain local WFGs

● Nodes for local processes

● Node “Pex” represents external processes

n Deadlock detection:

● If a site Si finds a cycle that does not
involve Pex, it has found a deadlock

● If a site Si finds a cycle that does involve
Pex, there is the possibility of a deadlock
n It sends a message containing its detected

cycle to any sites involved in Pex

n If site Sj receives such a message, it
updates its local WFG graph, and searches
it for a cycle

– If Sj finds a cycle that does not involve its
Pex, it has found a deadlock

– If Sj finds a cycle that does involve its Pex,
it sends out a message…

✘ Can report false deadlock

5 Spring 1999, Lecture 19

Distributed Deadlock Detection
(Obermarck’s Path-Pushing) (cont.)

n Example:

Initial state:

Site A detects cycle, sends message
describing that cycle to Site B:

Site B updates its WFG, finds cycle not
involving Pex ⇒ deadlock

P1

P5

P2

P3

site A

Pex

Pex P2

P3

site B

P4

P1

P5

P2

P3

site A

Pex

Pex P2

P3

site B

P4

6 Spring 1999, Lecture 19

Distributed Deadlock Detection (Chandy,
Misra, and Haas’s Edge-Chasing, 1983)

n When a process has to wait for a resource
(blocks), it sends a probe message to
process holding the resource

● Process can request (and can have to wait
for) multiple resources at once

● Probe message contains 3 values:
n ID of process that blocked
n ID of process sending message

n ID of process message was sent to

n When a blocked process receives a probe,
it propagates the probe to the process(es)
holding resources that it has requested

● ID of blocked process stays the same,
other two values updated as appropriate

● If the blocked process receives its own
probe, there is a deadlock

7 Spring 1999, Lecture 19

Distributed Deadlock Detection (Chandy,
Misra, and Haas’s Edge-Chasing) (cont.)

n Example where p1 initiates deadlock
detection by sending a probe:

4 Doesn’t report false deadlock (why not?)

4 Easy to implement, small messages,
relatively small number of messages

4 Don’t have to collect and maintain WFGs

p1

site A

p2 p3

p6

site B

p5 p4

p7

p8

p10

p9

site C

(1,1,2) (1,2,3)

(1,3,4)
(1,9,1)

(1,6,8)

(1,7,10)

(1,4,5)(1,5,6)(1,8,9)

8 Spring 1999, Lecture 19

Distributed Deadlock Detection
(Evaluation of Algorithms)

n Distributed deadlock detection

● Sites share responsibility for WFG and
deadlock detection

✔ No single point of failure

✔ Robust — multiple sites can detect the
same deadlock

✘ Avoiding false deadlock is hard

n Obermarck’s path-pushing

● n(n–1)/2 messages to detect deadlock
n n sites

● size of a message is O(n)

n Chandy, Misra, and Haas’s edge
chasing:

● m(n–1)/2 messages to detect deadlock
n m processes, n sites

● size of a message is 3 integers

9 Spring 1999, Lecture 19

Hierarchical Deadlock Detection

n Sites are organized hierarchically

● A site is only responsible for detecting
deadlocks involving its children sites

n Menasce and Muntz, 1979

● Sites (called controllers) are organized as
a tree
n Leaf controllers manage resources

– Each maintains a local WFG concerned
only about its own resources

n Interior controllers are responsible for
deadlock detection

– Each maintains a global WFG that is the
union of the WFGs of its children

– Detects deadlock among its children

● Whenever a controller changes its WFG
due to a resource request, it propagates
that change to its parent
n Parent updates its WFG, and searches it

for cycles, propagates changes upward

10 Spring 1999, Lecture 19

Hierarchical Deadlock Detection
(cont.)

n Ho and Ramamoorthy, 1982

● Sites are grouped into disjoint clusters

● Periodically, a site is chosen as a central
control site
n Central control site chooses a control site

for each cluster

● Control site collects status tables from its
cluster, and uses the Ho and
Ramamoorthy one-phase centralized
deadlock detection algorithm to detect
deadlock in that cluster

● All control sites then forward their status
information and WFGs to the central
control site, which combines that
information into a global WFG and
searches it for cycles

● Control sites detect deadlock in clusters
n Central control site detects deadlock

between clusters

11 Spring 1999, Lecture 19

Perspective

n Correctness of algorithms

● There are few formal methods to prove
the correctness of deadlock detection
algorithms — we usually use informal or
intuitive arguments

n Performance

● Usually measured as the number of
messages exchanged to detect deadlock
n Deceptive since message are also

exchanged when there is no deadlock

n Doesn’t account for size of the message

● Should also measure:
n Deadlock persistence time (measure of

how long resources are wasted)
– Tradeoff with communication overhead

n Storage overhead (graphs, tables, etc.)

n Processing overhead to search for cycles

n Time to optimally recover from deadlock

12 Spring 1999, Lecture 19

After Deadlock Detection:
Deadlock Recovery

n How often does deadlock detection run?

● After every resource request?

● Less often (e.g., every hour or so, or
whenever resource utilization gets low)?

n What if OS detects a deadlock?

● Terminate a process
n All deadlocked processes

n One process at a time until no deadlock
– Which one?
– One with most resources?

– One with less cost?
» CPU time used, needed in future
» Resources used, needed

– That’s a choice similar to CPU scheduling

n Is it acceptable to terminate process(es)?
– May have performed a long computation

» Not ideal, but OK to terminate it
– Maybe have updated a file or done I/O

» Can’t just start it over again!

13 Spring 1999, Lecture 19

After Deadlock Detection:
Deadlock Recovery (cont.)

n Any less drastic alternatives?

● Preempt resources
n One at a time until no deadlock

n Which “victim”?
– Again, based on cost, similar to CPU

scheduling

n Is rollback possible?
– Preempt resources — take them away

– Rollback — “roll” the process back to
some safe state, and restart it from there

» OS must checkpoint the process
frequently — write its state to a file

– Could roll back to beginning, or just
enough to break the deadlock

» This second time through, it has to
wait for the resource

» Has to keep multiple checkpoint files,
which adds a lot of overhead

n Avoid starvation
– May happen if decision is based on same

cost factors each time
– Don’t keep preempting same process (i.e.,

set some limit)

