
1 Spring 1999, Lecture 22

Issues in Transactions and
Concurrency Control (Review)

n Centralized transactions

● Concurrency control
n Locking algorithms

– Static locking

– Two-phase locking (2PL)
– Strict two-phase locking (strict 2PL)

n Optimistic concurrency control

n Timestamp ordering

● Handling deadlock for locking algorithms
n Deadlock detection
n Deadlock prevention

– Lock timeouts
– Transaction timestamps

n Distributed transactions

● Simple distributed vs. nested

● Atomic commit protocols
n One-phase
n Two-phase

2 Spring 1999, Lecture 22

Distributed Transactions

n A distributed transaction invokes
operations in several different servers

● Simple distributed transaction
n Client makes requests to more than one

server

n Each server carries out the client’s
requests without involvement by others

● Nested distributed transaction
n Client makes requests to more than one

server
n Some of those servers make requests of

yet other servers to carry out the client’s
request, and some of those servers may…

n Example:
– Client A tells server M to transfer $4 from

account A to C, and $3 from B to D
– A is at server X, B is at server Y, and C

and D are at server Z
– M tells server X to withdraw $4 from A

– M tells server Y to withdraw $3 from B
– M tells server Z to deposit $4 into C, and

$3 into D

3 Spring 1999, Lecture 22

Atomic Commit Protocols

n Distributed transactions are still required
to be completed atomically

n First server involved in the distributed
transaction becomes the coordinator

● Coordinator is responsible for committing
or aborting the transaction

● All transactions involved know the identity
of the coordinator

n One-phase atomic commit protocol

● Client has requested that operations be
performed at more than one server

● Transaction ends when client requests
that it be committed or aborted

● Coordinator tells all the servers in the
transaction to commit / abort, and keeps
repeating that request until all of them
acknowledge that they have carried it out

4 Spring 1999, Lecture 22

Atomic Commit Protocols (cont.)

n Two-phase atomic commit protocol

● Allows any server to abort its part of the
transaction; atomicity then requires the
entire transaction to be aborted

● Phase 1: (voting phase)
n Coordinator asks each worker if it can

commit its transaction

n Worker replies to coordinator; if its answer
is no, the worker immediately aborts

● Phase 2: (completion phase)
n Coordinator collects the votes (including

its own)
– If there are no failures, and all votes are

yes, the coordinator sends a commit
request to each worker

– Otherwise, the coordinator sends an abort
request to all workers that voted yes

n Workers that voted yes wait for a commit
or abort message, act accordingly, and in
the case of commit send a
have_committed message afterwards

5 Spring 1999, Lecture 22

Distributed Scheduling

n Scheduling in a centralized system:

● Resource = CPU

● Consumer = process

● Scheduling = assign each process to
some period of time on the CPU

n Scheduling in a distributed system:

● Resource = processor / workstation

● Consumer = computation task

● Scheduling = assign each computation
task to some processor

n Goal: distribute tasks to the set of
processors so as to optimize some cost
function (e.g., response time, utilization)

● Load distribution — deciding which tasks
to move from one processor to another,
and when to move them

6 Spring 1999, Lecture 22

Motivation for Load Distribution

n Have this situation:

n Want to allow this:

network

I'm
bored

CPU
cycles

available
here

Got
anything

I can
do?

Help!

I'm
dying
here

I'm
over-

loaded

7 Spring 1999, Lecture 22

Advantages of Load Distribution

n Reduce response time for processes

● Move to lightly loaded node

n Speed up individual jobs

● Go to faster node

● Split up process across multiple nodes

n Gain higher throughput

● Balance system load

● Mix I/O & CPU bound processes

n Utilize resources effectively

● Move to node where resources reside

n Reduce network traffic

● Cluster related processes on same node

8 Spring 1999, Lecture 22

Features of a Good
Load Distribution Method

n No a priori knowledge about processes

n Dynamic in nature — change with
system load, allow process migration

n Quick decision-making capability

n Balanced system performance and
overhead — don’t reduce system
performance collecting state information

n Stability — don’t migrate processes so
often that no work gets done (better
definition later)

n Scalability — works on both small and
large networks

n Fault tolerance — recover if one or more
processors crashes

9 Spring 1999, Lecture 22

Measuring Load

n Measures of system load (load index):

● Number of processes, resource demands
on those processes, instruction mixes,
architecture and speed of processor
n But some are swapped out, dead, etc.

n Remaining service time is unknown

● Length of ready or I/O queues
n Correlates well with response time
n Used extensively

n Unfortunately, queue length doesn’t really
correlate with CPU utilization, particularly
in an interactive environment

– One solution is to use a background
process to monitor CPU utilization (but…
this is expensive!)

● Must also account for time to transfer a
task to a new processor

10 Spring 1999, Lecture 22

Process Migration

n Process migration is the relocation of a
process from its current location (source
node) to another node (destination node)

● Preemptive — after process starts

● Non-preemptive — before process starts

● Mechanics of process migration:
n Selection of process to migrate

n Selection of destination node
n Transfer of process from source node to

destination node

n Major steps:

● Freeze process on source node, restart it
on destination node

● Transfer address space of process

● Forward messages meant for process

● Support communication with migrated
processes

11 Spring 1999, Lecture 22

Desirable Features of
Process Migration

n Transparency

● Access to all objects from everywhere

● Location-independent system calls

n Minimal interference

● Minimize freeze time (stopped execution
while process is being transferred)

n Minimal residual dependencies

● Migrated process should not depend in
any way on source node
n Adds to load on source node

n Failure of source node could affect it

n Efficiency

● Keep inefficiency to a minimum
n Time to select process and destination
n Time required to migrate a process

n Cost of remote execution afterwards
12 Spring 1999, Lecture 22

Process Migration Mechanisms

n Freezing and restarting a process

● Only an issue for preemptive transfers

● Immediate blocking
n If not executing a system call

n If executing a sys call, but sleeping and
interruptable

● Delayed blocking
n If executing a system call, but sleeping at

a non-interruptable priority — must delay
until system call is complete

● Wait for completion of fast I/O operations,
don’t wait for completion of slow I/O

● Keep track of files, switch to local files if
possible

● Keep same process ID after migration

13 Spring 1999, Lecture 22

Process Migration Mechanisms
(cont.)

n Transferring the address space

● Entire process state: registers, scheduling
info, memory tables, I/O states, process
ID, file info, etc.
n Must stop execution during transfer

● Address space: code, data, stack, heap
n Transfer can take a long time!

n Can continue execution during transfer

● Total freeze
n Stop execution during addr. space transfer

n Possible long suspension in execution

● Pre-transfer
n Continue execution during address space

transfer, then freeze process and transfer
remaining modified pages

n Small freeze time = little interruption

● Transfer on reference
n Leave address space on source node,

only transfer pages when and if they are
referenced

14 Spring 1999, Lecture 22

Process Migration Mechanisms
(cont.)

n Message-forwarding

● 3 types of messages to forward
1.Messages received at source node after

execution has stopped there, but before
execution has started on destination

2. Messages received at source node after
execution has started on destination

3. Messages sent to process later

● Resending the message
n Return or drop type 1 & 2 messages,

hope sender will resend to new location

● Origin site mechanism
n Messages are sent to original source site,

which forwards them as necessary

● Link traversal mechanism
n Type 1 messages are part of migration

n Type 2 & 3 messages follow a link
(forwarding address) left behing

15 Spring 1999, Lecture 22

Process Migration in
Heterogeneous Systems

n Must translate data

● Big endian, little endian (bytes & words)

● ASCII, EBCDIC, etc.

● External data representation
n Use standard representation for transfer

● Sinha describes various techniques for
migrating the exponent and mantissa of
floating point numbers
n However, many systems now use the

IEEE floating point format, for consistency

n Single precision = 32 bits (1 sign, 8
exponent, 23 mantissa)

n Double precision = 64 bits (1 sign, 10
exponent, 53 mantissa)

n For details, see my Computer
Organization lecture on the subject

● Also have to handle signed-infinity and
signed-zero, if those values are
supported by one or both of the nodes

