
1 Spring 1999, Lecture 23

Classifying Load Distribution
Algorithms

n How is system state (load on each
processor) used?

● Static / deterministic
n Does not consider system state; uses

static information about average behavior

n Load distribution decisions are hard-wired
into the algorithm

n Little run-time overhead

● Dynamic
n Takes current system state into account

n Has the potential to outperform static load
distribution because it can exploit short-
term fluctuations in system state

n Has some overhead for state monitoring

● Adaptive
n Subclass of dynamic

n Modify the algorithm based on the state
n For example, use different load distribution

policies based on load thresholds

2 Spring 1999, Lecture 23

Classifying Load Distribution
Algorithms (cont.)

n How is the load redistributed?

● Reduce the chance of having one
processor is idle, but tasks contending for
service at another processor, by
transferring tasks to between processors

● Load balancing
n Tries to equalize the load at all processors

n Moves tasks more often than load sharing;
much more overhead

● Load sharing
n Tries to reduce the load on the heavily

loaded processors only
n Probably a better solution

● Transferring tasks takes time
n To avoid long unshared states, make

anticipatory task transfers from overloaded
processors to ones that are likely to
become idle shortly

n Raises transfer rate for load sharing,
making it close to load balancing

3 Spring 1999, Lecture 23

Classifying Load Distribution
Algorithms (cont.)

n Can a task be transferred to another
processor once it starts executing?

● Preemptive / migratory transfers
n Can transfer a task that has partially

executed

n Have to transfer entire state of the task
– Virtual memory image
– Process control block

– Unread I/O buffers and messages
– File pointers
– Timers that have been set

– Etc.

n Expensive!!

● Non-preemptive / non-migratory transfers
n Can only transfer tasks that have not yet

begun execution
– No state to transfer

n Still have to transfer environment info
– Program code and data
– Environment variables, working directory,

inherited privileges, etc.

4 Spring 1999, Lecture 23

Classifying Load Distribution
Algorithms (cont.)

n Is the algorithm stable?

● Queuing-theoretic approach
n When the long-term arrival rate of work to

a system is greater than its capacity to
perform work, the system is unstable

– Overhead due to load distribution can itself
cause instability

» Exchanging state, transfer tasks, etc.

n Even if an algorithm is stable, it may
cause the system to perform worse than if
the algorithm were not used at all — if so,
we say the algorithm is ineffective

n An effective algorithm must be stable, but
a stable algorithm can be ineffective

● Algorithmic perspective
n If an algorithm performs fruitless actions

indefinitely with finite probability, it is
unstable (e.g., processor thrashing)

– Transfer task from P1 to P2, P2 exceeds
threshold, transfers to P1, P1 exceeds…

5 Spring 1999, Lecture 23

Components of a
Load Distribution Algorithm

n Transfer policy

● Determines if a processor is in a suitable
state to participate in a task transfer

n Selection policy

● Selects a task for transfer, once the
transfer policy decides that the processor
is a sender

n Location policy

● Finds suitable processors (senders or
receivers) to share load

n Information policy

● Decides:
n When information about the state of other

processors should be collected
n Where it should be collected from

n What information should be collected

6 Spring 1999, Lecture 23

Components of a
Load Distribution Algorithm

n Transfer policy

● Determines whether or not a processor is
a sender or a receiver
n Sender — overloaded processor

n Receiver — underloaded processor

● Threshold-based transfer
n Establish a threshold, expressed in units

of load (however load is measured)
n When a new task originates on a

processor, if the load on that processor
exceeds the threshold, the transfer policy
decides that that processor is a sender

n When the load at a processor falls below
the threshold, the transfer policy decides
that the processor can be a receiver

● Single threshold
n Simple, maybe too many transfers

● Double thresholds — high and low
n Guarantees a certain performance level

● Imbalance detected by information policy

7 Spring 1999, Lecture 23

Components of a
Load Distribution Algorithm (cont.)

n Location policy

● Once the transfer policy designates a
processor a sender, finds a receiver
n Or, once the transfer policy designates a

processor a receiver, finds a sender

● Polling — one processor polls another
processor to find out if it is a suitable
processor for load distribution, selecting
the processor to poll either:
n Randomly
n Based on information collected in previous

polls

n On a nearest-neighbor basis

● Can poll processors either serially or in
parallel (e.g., multicast)
n Usually some limit on number of polls, and

if that number is exceeded, the load
distribution is not done

● Can also just broadcast a query to find a
node who wants to be involved

8 Spring 1999, Lecture 23

Components of a
Load Distribution Algorithm (cont.)

n Selection policy

● Selects a task for transfer, once the
transfer policy decides that a particular
machine is a sender

● Non-preemptive
n Select the new tasks that caused the

processor to become a sender (by
increasing its load above the threshold)

● Preemptive
n Transfer long tasks

– Overhead in task transfer should be less
than reduction in response time caused by
the task

– Have to predict execution time

n Transfer tasks whose response time will
be improved after the transfer

● Other factors to consider
n Minimize overhead in transfer (small

tasks)

n Location-dependent system calls (use
resources that are only on one processor)

9 Spring 1999, Lecture 23

Components of a
Load Distribution Algorithm (cont.)

n Information policy

● Decides:
n When information about the state of other

processors should be collected

n Where it should be collected from

n What information should be collected

● Demand-driven
n A processor collect the state of the other

processors only when it becomes either a
sender or a receiver (based on transfer
and selection policies)

n Dynamic — driven by system state
– Sender-initiated — senders look for

receivers to transfer load onto
– Receiver-initiated — receivers solicit load

from senders

– Symmetrically-initiated — combination
where load sharing is triggered by the
demand for extra processing power or
extra work

10 Spring 1999, Lecture 23

Components of a
Load Distribution Algorithm (cont.)

n Information policy (cont.)

● Periodic
n Processors exchange load information at

periodic intervals

n Based on information collected, transfer
policy on a processor may decide to
transfer tasks

n Does not adapt to system state — collects
same information (overhead) at high
system load as at low system load

● State-change-driven
n Processors disseminate state information

whenever their state changes by a certain
degree

n Differs from demand-driven in that a
processor disseminates information about
its state, rather than collecting information
about the state of other processors

n May send to central collection point, may
send to their peers

11 Spring 1999, Lecture 23

3 Sender-Initiated Algorithms
(Eager, Lazowska, Zahorjan, 1986)

n Transfer Policy (who will participate?)

● Based on load & threshold(s), processors
decide if they are a sender or a receiver

● Triggered by new task (on a sender)

n Selection Policy (transfer which task?)

● New tasks only (non-preemptive)

n Location Policy (where to transfer?)

1. Random
n Doesn’t use remote state information

n Transfers task to a processor selected at
random (which may have to transfer it yet
again to some other processor)

n Problem — system will eventually spend
all its time transferring tasks

– Solution — limit number of transfers

n Provides substantial performance
improvement over no load sharing

12 Spring 1999, Lecture 23

3 Sender-Initiated Algorithms
(Eager, Lazowska, Zahorjan) (cont.)

n Location Policy (cont.)

2. Threshold
n Poll a processor at random

– If it’s a receiver, transfer the task to it

– Otherwise, poll another processor

n Limit the number of polls to keep the
overhead down

– If can’t find anyone to take the task, the
sender has to keep it

n Avoids useless transfers, so provides
substantial performance improvement
over the random location policy

2. Shortest
n Poll a random set of processors (less than

some limit) to find their queue lengths
n Select processor with shortest queue

length, and select it to receive the task,
unless its queue length > threshold

n Provides only marginal performance
improvement over the threshold location
policy (extra information didn’t really help)

13 Spring 1999, Lecture 23

3 Sender-Initiated Algorithms
(Eager, Lazowska, Zahorjan) (cont.)

n Information Policy (collect state?)

● Random location policy
n No state collected

● Threshold / shortest location policy
n Demand-driven — polling happens when

transfer policy identifies a processor as a
sender

n Stability

● Location policy is not effective at high
system loads, and causes instability by
failing to adapt to the system state
n No processor is likely to be lightly loaded

n Polling activity increases as the rate at
which work arrives in the system
increases

– Eventually reaches a point where the cost
of load sharing is greater than the benefit

» Most of effort is wasted in polling and
responding to polls

– Work exceeds capacity ⇒ instability
14 Spring 1999, Lecture 23

Receiver-Initiated Algorithms
(Shivaratri and Krueger, 1990)

n Transfer Policy (who will participate?)

● Based on load & threshold(s), processors
decide if they are a sender or a receiver

● Triggered by termination of a task (on a
receiver)

n Selection Policy (get which task?)

● Non-preemptive
n May not be a new task ready for transfer

● Preemptive
n Long tasks
n Tasks whose performance will increase

n Location Policy (get from where?)

● Threshold
n Poll a processor at random

– If it’s a sender, transfer a task from it

– Otherwise, poll another processor

15 Spring 1999, Lecture 23

Receiver-Initiated Algorithms
(Shivaratri and Krueger) (cont.)

n Location Policy (cont.)

● Threshold (cont.)
n Limit the number of polls to keep the

overhead down
– If can’t find anyone to get a task from,

receiver must wait until another task
completes, or some timeout occurs

n Information Policy (collect state?)

● Demand-driven — polling happens when
transfer policy identifies a processor as a
receiver

n Stability

● At high system load, there is a high
probability that a receiver will find a
suitable sender to share the load within a
few polls ⇒ stable and effective

● At low loads, polls more, but not so much
as to cause instability

16 Spring 1999, Lecture 23

Symmetrically-Initiated Algorithms

n At same time (use previous algorithms):

● Senders are searching for receivers

● Receivers are searching for senders

n Get advantages of both algorithms:

● At low system loads, the senders are
successful at finding underloaded
receivers

● At high system loads, the receivers are
successful at finding overloaded senders

n Get disadvantages of both algorithms:

● At high system loads, the senders can
cause instability

● The receivers usually require expensive
preemptive task transfers

17 Spring 1999, Lecture 23

Adaptive
Symmetrically-Initiated Algorithms

n Threshold Policy uses two thresholds:

● If queue > upper thresh, proc. is a sender

● If queue < lower thresh, proc. is a receiver

● Otherwise, processor is OK

n Still symmetrically-initiated, but tries to
use information from previous polls

● Start out assuming everyone is a receiver,
gradually learn everyone’s status, update
due to later polls

n Evaluation:

● At high system loads, senders avoid
indiscriminate polling, so do not cause
instability

● The receivers still usually require
expensive preemptive task transfers

