
1 Spring 1999, Lecture 24

Distributed File Systems

n Distributed file system — a distributed
implementation of a file system

● File service — specification of the file
system interface as seen by the clients

● File server — a process running on some
machine which helps implement the file
service by supplying files

n Goals of a distributed file system

● Network transparency
n Provide same operations for accessing

remote and local files

n Ideally, clients should not have to know
the location of files to access them

● Availability / robustness — file service
should be maintained even in the
presence of partial system failures

● Performance — should overcome
bottlenecks of a centralized file system

2 Spring 1999, Lecture 24

Distributed File Systems (cont.)

n In principle, files in a distributed file
system can be stored at any machine

● However, a typical distributed
environment has a few dedicated
machines called file servers that store all
the files

cache cache cache
local
disk

cache cache

server
disk

server
disk

server
disk

network

3 Spring 1999, Lecture 24

Distributed File System Services —
File Service Interface

n Need operations for creating and
deleting, opening and closing, and
reading and writing, files

n Upload / download model

● File service provides:
n Read — transfer entire file to client

n Write — transfer entire file to server

● Client works on file locally (in memory or
on disk)

✔ Simple, efficient if working on entire file

✘ Must move entire file

✘ Needs local disk space

n Remote access model

● File service provides usual file operations

● File stays on server

4 Spring 1999, Lecture 24

Distributed Naming Structures

n Need operations for name translation,
support for multilevel directories and links

● Location transparency — the name of the
file does not reveal the physical storage
location
n True for many naming schemes

● Location independence — the name of
the file need not change if the file’s
storage location changes
n False for most naming schemes

n Absolute names

● Names of form: machine : pathname

● Used by:
n Old UNIX distributed file systems

n Current web browsers (e.g., Netscape)

✔ User can use same tools and file
operations for local and remote access

✘ Not location transparent or independent

5 Spring 1999, Lecture 24

Distributed Naming Structures (cont.)

n Mount remote directories onto local
directories (possibly on demand)

● Client-maintained mount information:
n Used by UNIX and NFS — Sun’s Network

File System

n Client maintains:
– A set of local names for remote locations
– A mount table (/etc/fstab) that specifies a:

» < remote machine name : pathname >
» and < local pathname >

n At boot time, the local name is bound to
the remote name

– Afterwards, users refer to local pathname
as if it were local, and the distributed OS
takes care of the mapping

– Location transparent and independent
after the mount operation, but not before

● Server-maintained mount information:
n If files are moved to a different server,

mount information need only be updated
at servers

6 Spring 1999, Lecture 24

Distributed Naming Structures (cont.)

n Single name space for remote and local
directories

● Names of form: /.../machine/fs/pathname

● Used by:
n CMU’s Andrew, now in OSF’s Distributed

Computing Environment (DCE)

n Berkeley’s Sprite

● File names are always the same, whether
file is remote or local

● As clients access a file, the server sends
a copy to the client’s workstation, and the
workstation caches the file
n In Andrew, local disks are used

n In Sprite, large memories are used, and
workstations are diskless

n More details on these two next time…

● Location independent, not location
transparent

7 Spring 1999, Lecture 24

Remote File Access and Caching

n Once the user specifies a remote file, the
OS can do the access either:

● Remotely on the server machine, and
then return the results (RPC model), or

● Can transfer the file (or part of the file) to
the requesting host, and perform local
accesses, or

● Instead of doing the transfer for each user
request, the OS can cache files, and use
that cache to reduce the latency for data
access (and thus increase performance)

n Issues

● Where and when is data cached?

● Cache consistency:
n What happens when the user modifies the

file? Does each cached copy change?
Does the original file change?

n Is the cached copy is out of date?

8 Spring 1999, Lecture 24

Cache Location

n No caching — all files on server’s disk

✔ Simple, no local storage needed

✘ Expensive transfers

n Cache files in server’s memory

✔ Easy, transparent to clients

✘ Still involves a network access

n Cache files on client’s local disk

✔ Plenty of space, reliable

✘ Faster than network, slower than memory

n Cache files in client’s memory

● The usual solution (either in each
process’s address space, or in the kernel)

✔ Fast, permits diskless workstations

✘ Data may be lost in a crash

9 Spring 1999, Lecture 24

Cache Modification Policy

n Cache modification (writing) policy
decides when a modified (dirty) cache
block should be flushed to the server

n Write-through — immediately flush the
new value to server (& keep in cache)

✔ No problems with consistency

✔ Maximum reliability during crashes

✘ Doesn’t take advantage of caching during
writes (only during reads)

n Write-back (delayed-write) — flush the
new value to server after some delay

✔ Fast — write need only hit the cache
before the process continues

✔ Can reduce disk writes since the process
may repeatedly write the same location

✘ Unreliable — if machine crashes,
unwritten data is lost

10 Spring 1999, Lecture 24

Cache Modification Policy (cont.)

n Variations on write-back (when are the
new values flushed to the server?)

● Write-on-close — flush new value to the
server only when the file is closed
4Can reduce disk writes, particularly when

the file is open for a long time

8Unreliable — if machine crashes,
unwritten data is lost
8May make the process wait on the file

close

● Write-periodically — flush new value to
the server at periodic intervals (maybe 30
seconds)
4Can only lose writes in last period

11 Spring 1999, Lecture 24

Cache Validation

n A client must decide whether or not a
locally cached copy of data is consistent
is consistent with the master copy

n Client-initiated validation:

● Client initiates validity checks

● Client contacts the server and asks if its
copy is consistent with the server’s copy
n At every access, or

n After a given interval, or

n Only on file open

● Server could enforce single-writer,
multiple-reader semantics, but to do so
n It would have to store client state

(expensive)
n Clients would have to specify access type

(read / write) on open

✘ High frequency of validity checks may
mitigate the benefits of caching

12 Spring 1999, Lecture 24

Cache Validation (cont.)

n Server-initiated validation:

● Server records the parts of each file that
each client caches

● Server detects potential conflicts if two or
more clients cache the same file

● Concurrency control for handling conflicts:
n Session semantics — writes are only visible

in sessions starting later (not to processes
which have file open now)

– When a client closes a file that it has
modified, the server notifies the other clients
that their cached copy is invalid, and they
should discard it

» If another client has the file open,
discard it when its session is over

n UNIX semantics — writes are immediately
visible to others

– Clients specify the type of access they want
when they open a file, so if two clients want
to write the same file for writing, that file is
not cached

✘ Significant overhead at the server

13 Spring 1999, Lecture 24

Stateful vs. Stateless

n Stateful server — server maintains state
information for each client for each file

● Connection-oriented (open file, read /
write file, close file)

✔ Enables server optimizations like read-
ahead (prefetching) and file locking

✘ Difficult to recover state after a crash

n Stateless server — server does not
maintain state information for each client

● Each request is self-contained (file,
position, access)
n Connectionless (open and close are

implied)

✔ If server crashes, client can simply keep
retransmitting requests until it recovers

✘ No server optimizations like above

✘ File operations must be idempotent

