
1 Spring 1999, Lecture 25

Sun’s Network File System

n Designed by Sun Microsystems

● First distributed file service designed as a
project, introduced in 1985

● To encourage its adoption as a standard
n Definitions of the key interfaces were

placed in the public domain in 1989

n Source code for a reference
implementation was made available to
other computer vendors under license

n Currently the de facto standard for LANs

n Provides transparent access to remote
files on a LAN, for clients running on
UNIX and other operating systems

● A UNIX computer typically has a NFS
client and server module in its OS kernel
n Available for almost any UNIX and MACH

● Client modules are available for
Macintosh and PCs

2 Spring 1999, Lecture 25

Mounting Remote File Systems

n NFS supports mounting of remote file
systems by client machines

● Name space seen by each client may be
different

● Same file on server may have different
path names on different clients

● NFS does not enforce a single network-
wide name space, but a uniform name
space (and location transparency) can be
established if desired

/ (root)

export

people

bin

robinbill

/ (root)

usr

profsstudents

etc

han

/ (root)

nfs

users

janejim bob

remote

mount

remote

mount

clientserver 1 server 2

3 Spring 1999, Lecture 25

Mounting Remote File Systems (cont.)

n On each server

● There is a file (usually /etc/exports)
containing the names of local file systems
that are available for remote mounting

● An access list is associated with each
name, and indicates which hosts are
permitted to mount that file system

n On each client

● A modified version of the UNIX mount
command mounts a remote file system
n Based on RPC — specifies remote host

name, pathname of a directory in the
remote file system, and local name where
it is to be mounted

n Mount requests are usually performed
when the system is initialized (booted)

– Usually specified in /etc/fstab

n User may also be able to mount other
remote file systems

4 Spring 1999, Lecture 25

Mounting Remote File Systems (cont.)

n Remote file systems may be

● Hard mounted — when a user-level
process accesses a file, it is suspended
until the request can be completed
n If a server crashes, the user-level process

will be suspended until recovers

● Soft mounted — after a small number of
retries, the NFS client returns a failure
code to the user process
n Most UNIX utilities don’t check this code…

n Automounting

● The automounter dynamically mounts a
file system whenever an “empty” mount
point is referenced by a client
n Further accesses do not result in further

requests to the automounter…

n Unless there are no references to the
remote file system for several minutes, in
which case the automounter unmounts it

5 Spring 1999, Lecture 25

NFS Software Architecture

n Virtual file system:

● Separates generic file-system operations
from their implementation (can have
different types of local file systems)

● Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)

local
disk

UNIX
file

system

NFS
client

virtual file system

local remote

UNIX kernel

user-level
client process

system calls

client computer

local
disk

UNIX
file

system

NFS
server

virtual file system

UNIX kernel

server computer
network

NFS
protocol

6 Spring 1999, Lecture 25

Distributed Naming Structures
(Review)

n Mount remote directories onto local
directories (possibly on demand)

● Client-maintained mount information:
n Used by UNIX and NFS — Sun’s Network

File System

n Client maintains:
– A set of local names for remote locations
– A mount table (/etc/fstab) that specifies a:

» < remote machine name : pathname >
» and < local pathname >

n At boot time, the local name is bound to
the remote name

– Afterwards, users refer to local pathname
as if it were local, and the distributed OS
takes care of the mapping

– Location transparent and independent
after the mount operation, but not before

● Server-maintained mount information:
n If files are moved to a different server,

mount information need only be updated
at servers

7 Spring 1999, Lecture 25

NFS Protocol

n NFS protocol provides a set of RPCs for
remote file operations

● Looking up a file within a directory

● Manipulating links and directories

● Creating, renaming, and removing files

● Getting and setting file attributes

● Reading and writing files

n NFS is stateless

● Servers do not maintain information about
their clients from one access to the next
n There are no open-file tables on the server

● There are no open and close operations
n Each request must provide a unique file

identifier, and an offset within the file

● Easy to recover from a crash, but file
operations must be idempotent

8 Spring 1999, Lecture 25

NFS Protocol (cont.)

n Because NFS is stateless, all modified
data must be written to the server’s disk
before results are returned to the client

● Server crash and recovery should be
invisible to client —data should be intact

✘ Lose benefits of caching
n Solution — RAM disks with battery backup

(un-interruptable power supply), written to
disk periodically

n A single NFS write is guaranteed to be
atomic, and not intermixed with other
writes to the same file

● However, NFS does not provide
concurrency control
n A write system call may be decomposed

into several NFS writes, which may be
interleaved

n Since NFS is stateless, this is not
considered to be an NFS problem

9 Spring 1999, Lecture 25

Caching in NFS

n Traditional UNIX

● Caches file blocks, directories, and file
attributes

● Uses read-ahead (prefetching), and
delayed-write (flushes every 30 seconds)

n NFS servers

● Same as in UNIX, except server’s write
operations perform write-through
n Otherwise, failure of server might result in

undetected loss of data by clients

n NFS clients

● Caches results of read, write, getattr,
lookup, and readdir operations

● Possible inconsistency problems
n Writes by one client do not cause an

immediate update of other clients’ caches

10 Spring 1999, Lecture 25

Caching in NFS (cont.)

n NFS clients (cont.)

● File reads
n When a client caches one or more blocks

from a file, it also caches a timestamp
indicating the time when the file was last
modified on the server

n Whenever a file is opened, and the server
is contacted to fetch a new block from the
file, a validation check is performed

– Client requests last modification time from
server, and compares that time to its
cached timestamp

– If modification time is more recent, all
cached blocks from that file are invalidated

– Blocks are assumed to valid for next 3
seconds (30 seconds for directories)

● File writes
n When a cached page is modified, it is

marked as dirty, and is flushed when the
file is closed, or at the next periodic flush

● Now two sources of inconsistency: delay
after validation, delay until flush

11 Spring 1999, Lecture 25

Distributed Naming Structures
(Review)

n Single name space for remote and local
directories

● Names of form: /.../machine/fs/pathname

● Used by:
n CMU’s Andrew, now in OSF’s Distributed

Computing Environment (DCE)

n Berkeley’s Sprite

● File names are always the same, whether
file is remote or local

● As clients access a file, the server sends
a copy to the client’s workstation, and the
workstation caches the file
n In Andrew, local disks are used

n In Sprite, large memories are used, and
workstations are diskless

n More details on these two next time…

● Location independent, not location
transparent

12 Spring 1999, Lecture 25

CMU’s Andrew File System

n Designed by Carnegie Mellon University

● Developed during mid-1980s as part of
the Andrew distributed computing
environment

● Designed to support a WAN of more than
5000 workstations

● Much of the core technology is now part
of the Open Software Foundation (OSF)
Distributed Computing Environment
(DCE), available for most UNIX and some
other operating systems

n Provides transparent access to remote
files on a WAN, for clients running on
UNIX and other operating systems

● Access to all files is via the usual UNIX
file primitives

● Compatible with NFS — servers can
mount NFS file systems

13 Spring 1999, Lecture 25

Caching in Andrew

n When a remote file is accessed, the
server sends the entire file to the client

● The entire file is then stored in a disk
cache on the client computer
n Cache is big enough to store several

hundred files

n Implements session semantics

● Files are cached when opened

● Modified files are flushed to the server
when they are closed

● Writes may not be immediately visible to
other processes

n When client caches a file, server records
that fact — it has a callback on the file

● When a client modifies and closes a file,
other clients lose their callback, and are
notified by server that their copy is invalid

14 Spring 1999, Lecture 25

How Can Andrew Perform Well?

n Most file accesses are to files that are
infrequently updated, or are accessed by
only a single user, so the cached copy
will remain valid for a long time

n Local cache can be big — maybe 100
MB — which is probably sufficient for one
user’s working set of files

n Typical UNIX workloads:

● Files are small, most are less than 10kB

● Read operations are 6 times more
common than write operations

● Sequential access is common, while
random access is rare

● Most files are read and written by only
one user; if a file shared, usually only one
user modifies it

● Files are referenced in bursts

