
1 Spring 1999, Lecture 26

Real-Time Systems

n Most programs depend on instructions
executing in some sequence, but not
when those instructions execute

n A real-time program interacts with the
external world and is concerned with time

● When a stimulus appears, the program
must respond in a certain way, and
before some specified deadline

● If it delivers the correct answer, but after
the deadline, the system has failed

n Example: CPU in CD player

● CPU must be fast enough to read the CD
and produce the music acceptably

n Other examples: aircraft subsystem
controllers, scientific experiments,
telephone switches, CAT scanners, etc.

2 Spring 1999, Lecture 26

Stimulus and Response

n Some external device generates a
stimulus, and the real-time system must
respond before some deadline

● Stimuli may be periodic — occurring at
regular intervals —a television needs new
frame every 1/60th of a second

● Stimuli may be aperiodic — recurrent, but
not regular — arrival of an aircraft in an
air traffic controller’s airspace

● Stimuli may be sporadic — unexpected,
such as a device overheating

n System may have many types of events
(e.g., video input, audio input, motor
drive management), each with its own
period and required actions

n Input may come from either an analog or
digital device, but if analog, is converted
into digital information

3 Spring 1999, Lecture 26

Types of Real-Time Systems

n Soft real-time systems — it is acceptable
to occasionally miss a deadline

● Telephone switch may be permitted to
lose or misroute one call in 100,000

● Multimedia system may miss delivering
some video frames

n Hard real-time systems — it is never
acceptable to miss a deadline

● Extreme: missing a deadline may lead to
loss of live or an environmental
catastrophe

● Less extreme: missing a deadline may
mean in item on a conveyor belt in a
factor misses being processed

n The solution is not necessarily faster
computers, it’s good scheduling that’s
important

4 Spring 1999, Lecture 26

Event-Triggered vs.
Time-Triggered Systems

n Event-triggered systems — event is
detected by a sensor, which causes a
CPU interrupt

● Simple, widely used, works well for soft
real-time systems with sufficient
computing power

✘ Can fail under conditions of heavy load
n Pipe ruptures in nuclear reactor, causing

temperature alarms, pressure alarms,
radioactivity alarms, etc. to all go off at the
same time, causing many interrupts

n Time-triggered systems — clock interrupt
occurs at regular intervals, and at that
time selected sensors are sampled

● In example above, system would notice
all alarms at next time interrupt (but would
not have to deal with many interrupts)

● Less chance of failure at high load, but
slower response time

5 Spring 1999, Lecture 26

Other Design Issues

n Behavior should be predictable

● System should always be able to meet its
deadlines, even at peak load

n Should support fault-tolerance

● OK to use replication, “hot” backups, etc.
but still must not miss deadlines

● Fail-safe systems — can be stopped
when a serious failure occurs

n Language support

● Compiler must be able to determine
maximum execution time of loops
n No while loops, only for loops with

constant parameters

n No recursion

● Language must be able to specify
minimum and maximum delays

6 Spring 1999, Lecture 26

Real-Time Communication

n Predictability and determinism are more
important than high performance

● Stochastic LAN protocols such as
Ethernet are unacceptable, because they
do not guarantee an upper bound on
transmission time

● However, the token ring has a known
upper bound (time to traverse the ring)

n Time Division Multiple Access (TDMA)

● Traffic organized into fixed-size frames,
each of which contains N slots

● Each slot is assigned to one processor,
which may use it to transmit a packet
when its time comes

● Collisions are avoided, delay is bounded,
and each processor gets a guaranteed
fraction of the bandwidth

7 Spring 1999, Lecture 26

Real-Time Scheduling

n System programmed as collection of
short tasks (processes or threads), each
with a well-defined function and well-
bounded execution time

● Response to a stimulus may require
multiple tasks to be run, often with some
constraints on their execution order

● System has to decide which tasks to run
on which processor, and when to run
each task

n Hard real time vs. soft real time

n Preemptive vs. non-preemptive

n Dynamic (scheduling decisions made
during execution) vs. static (scheduling
decisions are made before execution)

n Centralized vs. decentralized
8 Spring 1999, Lecture 26

Static Scheduling

n Done before system starts operating

n Input: list of tasks, times that each must
run (dependencies, time constraints)

n Output: assignment of tasks to
processors, starting times for each

n Method:

● Exhaustive search to find optimal
solution, but this method is exponential in
number of tasks, so seldom used

● Should also consider communication

● Runtime behavior is completely
deterministic, and known before the
program execution starts

● System will always meet its real-time
constraints, so long as there aren’t
processor or communication failures

9 Spring 1999, Lecture 26

Dynamic Scheduling

n Decides which task to run next as
programs execute

● Same input & output as static scheduling

n Methods (uniprocessor only, no
consideration of data dependencies):

● Rate monotonic algorithm (Liu and
Layland, 1973)
n Preemptive scheduling of periodic tasks

n Each task is assigned a priority equal to its
execution frequency

n Scheduler selects highest priority task,
preempting other tasks if necessary

● Earliest deadline first (Jackson, <1977)
n When an event is detected, scheduler

adds it to list of waiting tasks
n List is sorted by deadline, closest first

n Scheduler selects task at head of the list,
preempting other tasks if necessary

10 Spring 1999, Lecture 26

Dynamic Scheduling
(cont.)

n Methods (uniprocessor only, no
consideration of data dependencies):

● Laxity / slack
n Scheduler computes for each task the

amount of time until its next deadline; this
is called the “laxity”, or “slack”

n Scheduler selects the task with the least
laxity, since it has the least scheduling
freedom

● These methods are not optimal in a
multiprocessor / distributed system, but
they are still useful as heuristics

n In general, static scheduling is the best fit
for a time-triggered system, while
dynamic scheduling is best for an event-
triggered system

● Optimal schedule is possible for stat. sch.

● Dynamic scheduling must have sufficient
resources for even unlikely cases

11 Spring 1999, Lecture 26

More Complex Scheduling

n May have to reserve service time for
sporadic tasks

n Tasks may be non-preemptive

n Data dependencies modeled using a
precedence graph

● Can’t schedule a task until all its
predecessors have completed

n May have multiple processors (possibly
of different types)

● These problems are NP-hard

● May have resource constraints — limit on
number of resources of a particular type
that may be in use at any point in time

n Tasks may have different (non-unit)
execution times

