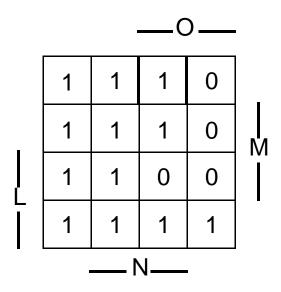
Name:

Exam #1


CompOrg

Monday 21 September 1998

- 1. For each of the following statements, write the word "true" below the statement if it is true, and "false" below the statement if it is false. (5 points each = 20 points)
 - a. Mechanical adding machines usually have more significant digits than slide rules.
 - b. Mechanical adding machines can use logarithms to multiply and divide.
 - c. Early computers were used to compute artillery tables during World War II.
 - d. Before becoming president of IBM, Thomas Watson was a highly successful stockbroker.

2. Give the truth table for a combinational circuit that takes a two-bit input labeled A_1A_0 and a two-bit input labeled B_1B_0 and produces a one-bit output C that is true (1) if the value A_1A_0 is numerically *greater than* the value B_1B_0 and is false (0) otherwise. (15 points)

3. Given the Karnaugh Map below, draw the appropriate ovals on the map, and write the simplified two-level sum-of-products expression to the right of the map. (20 points)

4. Draw the combinational circuit that *directly* corresponds to the Boolean equation $z = (b \oplus c') + (ab)'(a'+c)'$ in the space below. (20 points)

Name:	
-------	--

- 5. Perform the following conversions, showing your work. (5 points each = 15 points)
 - a. 29_{10} to base 2

b. 1100010101_2 to base 8

c. $15A_{16}$ to base 10

- 6. This question explores the difference between different types of encoding. (5 points each = 10 points)
 - a. Does it require more or less bits to store "23" as a ASCII character string than as a number? Explain your answer.

b. What is the basic idea behind Huffman encoding? (Note — I'm not asking for the entire algorithm or a detailed example, just the basic idea.)