## Friday 16 October 1998

1. Explain the difference between a $D$ flip-flop and a $D$ latch. ( 10 points)

With a D latch, the output Q changes to match the D input anytime CK is high.
With a D flip-flop, the output Q changes to match the D only on the rising edge of CK (when it changes from low to high).
2. Draw a diagram showing how a 4 -input multiplexer (with inputs $\mathbf{i 3}$ - $\mathbf{i 0}$ and select lines $s 1-s 0$ ) can be built from 2 -input multiplexers. ( 15 points)

3. How does a PLA compare to a field-programmable logic device (FPLD)? points)

Both are "programmable" in the field by the designer, but a PLA can be programmed only once, while a FPLD can be programmed many times

A PLA contains an AND-OR structure; a FPLD is essentially an array of PLAs (so it's bigger). Also, a FPLD usually includes registers, RAM, and other components not on a PLA.
4. For each of the following registers, give the full name of the register, and briefly describe what it is used for: ( 3 points each $=12$ points)
a. PC

Program Counter - holds address of next instruction to be executed
b. IR

Instruction Register - holds current instruction being executed
c. MAR

Memory Address Register - holds address being passed to memory (specifies location to be read from or written to)
5. Draw a diagram showing how a $1 \mathrm{M}\left(2^{20}\right) \times 4$ bit memory system can be built using $1 M \times 1$ bit memory chips. Clearly show the address and data lines that connect to each chip. For simplicity, don't show the R/W' and CS lines connecting to the chips unless the connections are different for some chips. (15 points)

6. For a disk system, explain how the terms "platter", "surface", "track", and "sector" are related. (8 points)

A platter is a disk of magnetic material; it has two surfaces. Each surface is divided into rings called tracks, and each track is divided into fixed-size sections called sectors.
7. For an accumulator machine, write code to execute the statement " $D=A D$ BC", assuming A is stored at memory location 20, B at location 21, C at location 22, and $D$ at location 23. Do not destroy the contents of any variable except $D$, which should receive the final value of the computation. ( 15 points)

| LOAD | 21 | $;$ B |
| :--- | :--- | :--- |
| MPY | 22 | $; \mathrm{BC}$ |
| STORE | 24 | $; \mathrm{TEMP}=\mathrm{BC}$ |
| LOAD | 20 | $; \mathrm{A}$ |
| MPY | 23 | $; \mathrm{AD}$ |
| SUB | 24 | $; \mathrm{AD}-\mathrm{BC}$ |
| STORE | 23 | $; \mathrm{D}=\mathrm{AD}-\mathrm{BC}$ |

8. For an LOAD/STORE machine, write code to execute the statement "D=AD BC", assuming A is stored at memory location 20, B at location 21, C at location 22, and $D$ at location 23. Do not destroy the contents of any variable except $D$, which should receive the final value of the computation. ( 15 points)

| LOAD | R0,20 | $; \mathrm{A}$ |
| :--- | :--- | :--- |
| LOAD | $\mathrm{R} 1,21$ | $; \mathrm{B}$ |
| LOAD | $\mathrm{R} 2,22$ | $; \mathrm{C}$ |
| LOAD | R3,23 | $; \mathrm{D}$ |
| MPY | R0,R0,R3 | ;AD |
| MPY | R1,R1,R2 | ; BC |
| SUB | R0,R0,R1 | $; \mathrm{AD}-\mathrm{BC}$ |
| STORE | $23, R 1$ | $; \mathrm{D}=\mathrm{AB}-\mathrm{BC}$ |

