
Name: _____________________________

1

CS 33003 Exam #3 CompOrg

Friday 13 November 1998

1. Given the following C code fragment:

if (a < b)
a = b + 2;

else
a = b + 4;

In the space below, translate this code fragment into the book’s LOAD /
STORE format. Assume that space has already been allocated for variables a
and b earlier in the program, and they have been given initial values. (20
points)

LOAD R0,a
LOAD R1,b
CMP R0,R1
BRLT then
JUMP else

then: ADD R0,R1,#2
JUMP end

else: ADD R0,R1,#4
end:

2. Given a 32-bit value in register R3, write a one-instruction code fragment in
the book’s LOAD / STORE format that will set the 8 most significant bits to all
zeros, and leave the remaining 24 bits untouched. Indicate a binary value by
preceding it with “b”, as in “#b10000000” for 12810. (5 points)

AND R3,R3,#b00000000111111111111111111111111
or BCLR R3,31,24

3. In the space below each of the following 3 statements, explain what the
statement does, making it clear to me that you understand the difference
between them. (5 points each = 15 points)

a. .equate x 100

Defines the symbol “x” to stand for the value “100”; does not allocate any memory space.

b. x: .reserve 100

Allocates 100 bytes of unitialized memory space, which is referred to as “x”.

c. x: .word 100

Name: _____________________________

2

Allocates 1 word (4 byte) of memory space, initialized to the value “100”; this word is
referred to as “x”.

4. Given the following C code fragment, where arr is an array of 5 ints:

for (i=0; i<5; i++)
arr[i] = i;

In the space below, translate this code fragment into the book’s LOAD /
STORE format, using indexed addressing to access the array arr. Assume that
uninitialized space has already been allocated for variable arr earlier in the
program, and i can be held in register R0. (20 points)

LOAD R0,#0 ; i
LOAD R1,#0 ; index

test: CMP R0,#5 ; if (i<5)
BRLT for
JUMP end

for: STORE arr[R1],R0 ; arr[index] = i
ADD R0,R0,#1 ; i++
ADD R1,R1,#4 ; index += 4
JUMP test

end:

5. Given the following assembly language code fragment, which begins execution
at label “main”:

sub1: …
JSR sub2,R31
…
JUMP@R31

sub2: …
…
JUMP@R31

main: …
…
JSR sub1,R31
…
…

a. What problems will occur when the code executes? Be specific. (10
points)

As sub1 starts to execute, R31 contains the return address — the address of the instruction
following the JSR in main. However, when sub1 runs, the JUMP to sub2 will put a new
return value into R31— the address of the instruction following the JSR in sub1. This
destroys the previous value, so once sub1 finishes, when it tries to return to the line
following the JSR in main, it will go instead to the line following the JSR in sub1 —
essentially stuck forever in an infinite loop.

Name: _____________________________

3

b. How can this problem be avoided? (5 points)

Save the R31 value at the beginning of sub1, and restore it before returning from sub1.

6. Show the 5-bit representation of each of the decimal values below in each of
the specified formats. If it is not possible to represent a particular value in a
particular format, write “not possible” in that location. (15 points)

Value Signed
Magnitude

Excess 16 2 ’ s
Complement

1 6 not possible not possible not possible

1 5 01111 11111 01111

2 00010 10010 00010

–15 11111 00001 10001

–16 not possible 00000 10000

7. This question concerns the SPARC architecture.

a. What does the instruction “ld [%l3+%l4],%l5” do? (5 points)

Adds the values in local registers %l3 and %l4 to produce an address, gets the value at that
address in memory, and stores the result in local register %l5.

b. What does the instruction “set arr,%l5” do, and what is unusual about this
instruction? (5 points)

Stores the address of “arr” into local register %l5. It is unusual in that it is a synthetic
instruction, known only to the assembler; it is actually implemented in machine language
using the “sethi” and “or” instructions.

