1. Draw a simplified block diagram for a $4 \mathrm{M} \times 4$ bit memory system using $2 \mathrm{M} \times 1$ bit memory chips

Homework \#3 — Due 10/12/98 (cont.)

4. Write assembly language code for the statement " $\mathrm{a}=(\mathrm{d}+\mathrm{c})-\mathrm{a}$ ", in the $0-, 1-$, and 2-operand instruction formats, assuming:
variable a is stored at address 20, b is at $21, c$ is at $22, d$ is at 23 , and addresses 25-29 can be used for temporary storage of intermediate results.

Do not destroy the values in variables b, c, ord.

0-operand	1-operand	2-operand
PUSH 23	LOAD 23	MOVE 25,23
PUSH 22	ADD 22	ADD 25,22
ADD	SUB 20	SUB 25,20
PUSH 20	STORE 20	MOVE 20,25

SUB
POP 20

Homework \#3 — Due 10/12/98
(cont.)
2. For each ..., (i) give a sequence of instructions..., and (ii) translate... into binary... Assume that variables a, b, c, d, and e correspond to memory locations $20,21,22,23$, and 24 , respectively, and that locations 25 and higher can be used for storage of temporary results.
a. $a=a+b-c$

LOAD	20	10010100
ADD	21	00010101
SUB	22	00110110
STORE	20	10110100

b. $a=b c-a b$

LOAD	20	10010100
MPY	21	01010101
STORE	25	10111001
LOAD	21	10010101
MPY	22	01010110
SUB	25	00111001
STORE	20	10110100

