Homework \#5 - Due 11/9/98

1. Perform the following arithmetic operations in 5-bit two's complement arithmetic, showing your work:

$$
\begin{array}{r}
6 \\
+\quad 7 \\
+\underline{7}+\underline{00110} \\
01101
\end{array}=13
$$

$$
\begin{array}{rr}
6 & 00110 \\
-\underline{7} & -\underline{00111} \\
+\frac{11001}{11111}=-00001=-1
\end{array}
$$

$$
\begin{array}{rrr}
6 & 00110 & 00110 \\
+-\underline{4} & -\underline{00100}+\underline{11100} \\
1) \\
\hline 00010
\end{array}=2 \text { (ignore carry) }
$$

$$
\begin{array}{rrr}
-2 & -00010 & 11110 \\
--5 & -00101 & 00101
\end{array}
$$

$$
-\underline{-5} \quad-\underline{-00101}+\frac{00101}{1) 00011}=3 \text { (ignore carry) }
$$

2. Convert to IEEE 754 floating point single precision format, showing your work as you convert between decimal and binary:

- - 18.375

$$
\begin{aligned}
& 18 / 2=9 \text {, rem } 0 \\
& 2 / 2=1 \text {, rem of } 0 \\
& 9 / 2=4 \text {, rem of } 1 \\
& 1 / 2=0 \text {, rem of } 1 \\
& 4 / 2=2 \text {, rem of } 0 \\
& 0.375 \text { * } 2=0.75 \\
& 0.75 * 2=1.5 \\
& 0.5 \text { * } 2=1.0 \\
& \text { Therefore, }-18.375_{10}=10010.011_{2} \\
& =1.0010011_{2} \times 2^{4} \\
& =1.0010011_{2} \times 2^{131-127}
\end{aligned}
$$

$131 / 2=65$, rem $1 \quad 8 / 2=4$, rem of 0
$65 / 2=32$, rem $1 \quad 4 / 2=2$, rem of 0
$32 / 2=16$, rem $0 \quad 2 / 2=1$, rem of 0
$16 / 2=8$, rem
$1 / 2=0$, rem of 1
Therefore, $131_{10}=10000011_{2}$
Giving -18.375 in IEEE floating point:
11000001100100110000000000000000

