Homework #5 — D	Due 11/9/98
-----------------	-------------

1. Perform the following arithmetic operations in 5-bit two's complement arithmetic, showing your work:

6 + <u>7</u>	00110 + <u>00111</u> 01101 =	13
6 - <u>7</u>	00110 - <u>00111</u>	00110 + <u>11001</u> 11111 = -00001 = -1
6 + - <u>4</u>	00110 - <u>00100</u>	00110 + <u>11100</u> 1)00010 = 2 (ignore carry)
-2 - <u>-5</u>	-00010 <u>00101</u>	11110 + <u>00101</u> 1)00011 = 3 (ignore carry)
		Fall 1998, Hornework 05

1

2. Convert to IEEE 754 floating point single precision format, showing your work as you convert between decimal and binary:

● -18.375		
18 / 2 = 9, rem 0	2 / 2 = 1, rem of 0	
9 / 2 = 4, rem of 1	1 / 2 = 0, rem of 1	
4 / 2 = 2, rem of 0		
0.375 * 2 = 0.75		
0.75 * 2 = 1.5		
0.5 * 2 = 1.0		
Therefore, -18.375	₁₀ = 10010.011 ₂	
	= 1.0010011 ₂ x 2 ⁴	
	$= 1.0010011_2 \times 2^{131-127}$	
131 / 2 = 65, rem 1	8 / 2 = 4, rem of 0	
65 / 2 = 32, rem 1	4 / 2 = 2, rem of 0	
32 / 2 = 16, rem 0	2 / 2 = 1, rem of 0	
16 / 2 = 8, rem 0	1 / 2 = 0, rem of 1	
Therefore, 131 ₁₀	= 10000011 ₂	
Giving –18.375 in IEEE floating point: 1 10000011 00100110000000000000000		
	Fall 1998, Homework 05	

2