
1 Fall 1998, Homework 07

Homework #7 — Due 12/7/98

1. How do branches cause problems when
wide memories are used?

If 4 instructions are fetched at once, and
instruction 1 is a branch, instructions 2-3
have already been fetched, and will
incorrectly be executed. Even worse, if it
isn’t determined that instruction 1 is a
branch instruction until the execute
phase, by then instructions 5-8 are also
being fetched.

2. How do the level 1 cache, level 2 cache,
and main memory compare in size and
access time?

Level 1 cache is small (128KB-512KB)
and very fast (1-2 clock cycles access
time). Level 2 cache is larger (1MB) and
moderately fast (6-8 clock cycles access

2 Fall 1998, Homework 07

Homework #7 — Due 12/7/98 (cont.)

time). Main memory is very large (32MB-
64MB) and very slow (50-75 clock cycles
access time).

3. Suppose the operations that need to be
performed by one stage in a pipeline take
longer than those in the other stages.
Does this affect the pipeline? Explain.

Two answers, depending on how you
read the question:

Yes, every stage in the pipeline has to be
the same length, so if one stage wants
20ns and every other stage wants 10ns,
then every stage will have to be 20ns.
(Of course, in this situation, maybe it
would be best to break that large stage
down into two 10ns stages!)

3 Fall 1998, Homework 07

Homework #7 — Due 12/7/98 (cont.)

If one stage needs more time (e.g., it’s
waiting on a memory access), the
pipeline can be stalled (no stages do any
work) until it is ready.

4. Pipeline stalls and slips are pretty similar.
When does each occur, and how is the
pipeline affected by each?

A stall can occur on an instruction fetch;
in this case no stage in the pipeline does
any work until the stall is resolved.

A slip can occur using register interlocks,
as a solution to write/read data hazards.
In this case that one instruction stops,
but the previous instructions continue
their execution.

4 Fall 1998, Homework 07

Homework #7 — Due 12/7/98 (cont.)

5. Explain the difference between data
parallelism and control parallelism.

In data parallelism, multiple PEs are
doing the same thing, just on different
pieces of data. When “if” statements are
encountered, one set of PEs will process
the “then” portion while the other PEs sit
idle; then the first set sit idle while the
second set process the “else” portion.

In control parallelism, the PEs can be
doing different things on different pieces
of data. When “if” statements are
encountered, one set of PEs can process
the “then” portion while while the second
set can process the “else” portion at the
same time.

