Data Representation

Number systems

- Grouping systems
- Roman numerals (e.g, C, L, X, V, I)
- Coins (e.g., quarter, dime, nickel, penny)
- Order is generally not important
- No zero
- Positional number systems
- Base 10 (decimal)
- Base 2 (binary)
- Order is important
- Zero is used as a placeholder

Encoding = symbolic representation of a value, in some specified number of digits, in some specified alphabet

- Number (integers)
- Characters

Positional Number Systems

- Base 10 (decimal)

$$
1396=1 \cdot 10^{3}+3 \cdot 10^{2}+9 \cdot 10^{1}+6 \cdot 10^{0}
$$

- Base 2 (binary)

$$
\begin{aligned}
1101_{2} & =1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0} \\
& =1 \cdot 8+1 \cdot 4+0 \cdot 2+1 \cdot 1 \\
& =13_{10}
\end{aligned}
$$

- Base 8 (octal)

$$
\begin{aligned}
173_{8} & =1 \cdot 8^{2}+7 \cdot 8^{1}+3 \cdot 8^{0} \\
& =1 \cdot 64+7 \cdot 8+3 \cdot 1 \\
& =123_{10}
\end{aligned}
$$

■ Base 16 (hexadecimal) ($A=10, B=11 \ldots$)

$$
\begin{aligned}
7 \mathrm{~B}_{16} & =7 \cdot 16^{1}+11 \cdot 16^{0} \\
& =123_{10}
\end{aligned}
$$

Converting Base 2 to Bases 8 or 16

Keep in mind the conversions

$$
\begin{aligned}
& 000=0,001=1,010=2,011=3 \\
& 100=4,101=5,110=6,111=7 \\
& 1000=8,1001=9,1010=A, 1011=B \\
& 1100=C, 1101=D, 1110=E, 1111=F
\end{aligned}
$$

And remember that

- 3 bits correspond to one digit in base 8
- 4 bits correspond to one digit in base 16

Then simply "repartition" to convert

- Convert 11110112 to base 8 $\underline{001 / 111 / 011=1738}$
- Convert 173_{8} to base 16 001/111/ $011=$ $\underline{0} 111 / 1011=7 \mathrm{~B}_{16}$

Converting Base 10 to Other Bases

Converting to base 8 the hard way:

- Figure out how many (say) 512s, how many 64s, how many 8s, how many 1 s

Better algorithm for converting to base 8:

- Repeatedly divide (integer division) by 8 - Use the quotient in the next division
- Use the remainder to form the converted value, starting with the least significant digit
- Stop after quotient of 0 is reached
- Example: convert 123 to base 8
- $123 / 8=15$, remainder of 3
- $15 / 8=1$, remainder of 7
- $1 / 8=0$, remainder of 1
- Answer: $123_{10}=173_{8}$
- Converting to base 2 is similar (although more time-consuming)

Converting Base 10 Fractions to Other Bases

- In text, explanation on page 12 is overly complicated

Converting a base 10 fraction to base 8:

- Repeatedly multiply by 8
- Use the fractional part of the result in the next multiplication
- Use the integer part of the result to form the converted fraction, starting with the most significant digit
- Stop after fractional part of result reaches a value of 0
- Example: convert 0.6875 to base 8
- $0.6875 \times 8=5.5$ so far: 0.5_{8}
- $0.5 \times 8 \quad=4.0$ so far: 0.54_{8}
- Answer: $0.6875_{10}=0.54_{8}$

Converting to base 2 is similar (although more time-consuming)

Worksheet

■ Convert to decimal:

1011011_{2}	24_{8}
14_{16}	$1 \mathrm{F7}_{16}$
10.101_{2}	3.74_{8}

- Perform conversion shown:
234_{10} to base 8
F3 ${ }_{16}$ to base 2
$27 \mathrm{E}_{16}$ to base 8
0.9375_{10} to base 8

Homework \#1 — Due 9/14/98 (Part 1)

Convert the following to decimal:
$1101_{2} \quad 244_{8} \quad 2 B 9_{16}$

- Convert the following to binary:
89_{10}
$1 \mathrm{C} 4_{16}$
56_{8}

Convert the following to octal:
$12.484375_{10} \quad 1010_{2} \quad 9 E 7_{16}$

