
1 Fall 1998, Lecture 04

Encoding Integers

n Encoding = symbolic representation of a
value, in some specified number of digits,
in some specified alphabet

● We will consider encodings using the
binary alphabet (0,1)

n We’ll look at encoding integers briefly
now, in more depth later (Chapter 7)

● Also: encoding real numbers (Chapter 8)

n Signed magnitude representation

● Precede number with sign bit
0 = positive, 1 = negative

● Examples (5-bit signed magnitude)
+1310 = +11012 = 011012sm

–1310 = –11012 = 111012sm

2 Fall 1998, Lecture 04

Encoding Integers (cont.)

n Two’s complement representation

● Represent positive numbers in n-bit
signed magnitude form

● Represent negative numbers as 2n–N

● Examples (5-bit two’s complement)
+1310 = +11012 = 011012’scomp

–1310 = 32 – 13 = 19 = 100112’scomp

● Examples (8-bit two’s complement)
+1310 = +00011012 = 000011012’scomp

–1310 = 256 – 13 = 243 = 111100112’scomp

n Short cut: start with 5-bit representation,
and extend (replicate) the sign to produce
3 more significant digits

3 Fall 1998, Lecture 04

Encoding Characters

n ASCII (American Standard Code for
Information Interchange) is a fixed-length
code, of length 7

● Examples (see page 18 of text for
complete list)

! 010 0001
+ 010 1011

3 011 0011

9 011 1001

H 100 1000
M 100 1101

h 110 1000

m 110 1101

CR 000 1101 (carriage return)

n Most memory systems can store 8 bits at
a time

● Extended ASCII uses that 8th bit

4 Fall 1998, Lecture 04

Encoding Characters (cont.)

n Huffman coding is a variable-length code

● Basic idea: use less bits to represent
more common characters

n Simple example:

● Given a set of data that contains 50,000
instances of the six characters a, c, g, k,
p, and z, which occur with the following
percent frequencies:

a 48% c 9% g 12%

k 4% p 17% z 10%

● The Huffman coding for these characters
would be:

a 0 c 1101 g 101

k 1100 p 111 z 100

n Algorithm (more details in text): merge
nodes with smallest values; label branch
with smallest value as 0, other as 1

5 Fall 1998, Lecture 04

Error Detection & Check Sums

n Most consumer products are identified by
a Universal Product Code (UPC), printed
as a bar code with a number below

● Example: UPC for Kellogg’s Froster Mini-
Wheats is 0 38000 54283 1

n First digit indicates type of product, next
5 digits identify manufacturer, next 5
digits identify product, last digit is a check
digit (or check sum)

n Check sum is computed as follows:

● Sum digits 1, 3, 5, 7, 9, 11, multiply by 3

● Sum digits 2, 4, 6, 8, 10, add to product

● Check sum is the number that must be
added to sum to make it a multiple of 10

● Example:
(0+8+0+5+2+3)(3)+(3+0+0+4+8)=69

check sum is 1
6 Fall 1998, Lecture 04

Parity

n A similar idea to check sums is that of
parity:

● Add a bit, called the parity bit, to the
encoding of a number or character

● For even parity, the sum of the encoded
digits, plus the parity bit, must be even

● For odd parity, the sum of the encoded
digits, plus the parity bit, must be odd

n Example — ASCII plus an even parity bit
 ASCII ASCII w/ even parity

3 011 0011 0 011 0011

H 100 1000 0 100 1000

h 110 1000 1 110 1000

n If there is an error in a single bit, it will be
detected by a parity encoding with a
single parity bit

7 Fall 1998, Lecture 04

Homework #2 — Due 9/14/98 (Part 2)

4. Give the 8-bit two’s complement
encoding of the following:

 –4610 7810

5. The UPC code for Ty Inc’s Beanie Babie
named “Bernie” begins 0 08421 04109.
Show the computation of the check sum.

