Encoding Integers

- Encoding = symbolic representation of a value, in some specified number of digits, in some specified alphabet
 - We will consider encodings using the binary alphabet (0,1)
- We'll look at encoding integers briefly now, in more depth later (Chapter 7)
 - Also: encoding real numbers (Chapter 8)
- Signed magnitude representation
 - Precede number with sign bit
 0 = positive, 1 = negative
 - Examples (5-bit signed magnitude) +13₁₀ = +1101₂ = 01101_{2sm} -13₁₀ = -1101₂ = 11101_{2sm}

Encoding Integers (cont.)

- Two's complement representation
 - Represent positive numbers in n-bit signed magnitude form
 - Represent negative numbers as 2ⁿ–N
 - Examples (5-bit two's complement) +13₁₀ = +1101₂ = 01101_{2'scomp} -13₁₀ = 32 - 13 = 19 = 10011_{2'scomp}
 - Examples (8-bit two's complement) +13₁₀ = +0001101₂ = 00001101_{2'scomp} -13₁₀ = 256 - 13 = 243 = 11110011_{2'scomp}
 - Short cut: start with 5-bit representation, and extend (replicate) the sign to produce 3 more significant digits

Fall 1998, Lecture 04

Encoding Characters

- ASCII (American Standard Code for Information Interchange) is a fixed-length code, of length 7
 - Examples (see page 18 of text for complete list)
 - ! 010 0001
 - + 010 1011
 - 3 011 0011
 - 9 011 1001
 - H 100 1000
 - M 100 1101
 - h 110 1000
 - m 110 1101

CR 000 1101 (carriage return)

- Most memory systems can store 8 bits at a time
 - Extended ASCII uses that 8th bit

Encoding Characters (cont.)

- Huffman coding is a variable-length code
 - Basic idea: use less bits to represent more common characters
- Simple example:

2

Fall 1998, Lecture 04

 Given a set of data that contains 50,000 instances of the six characters a, c, g, k, p, and z, which occur with the following percent frequencies:

a 48%	c 9%	g 12%
k 4%	p 17%	z 10%

 The Huffman coding for these characters would be:

a 0	c 1101	g	101
k 1100	p 111	Z	100

Algorithm (more details in text): merge nodes with smallest values; label branch with smallest value as 0, other as 1

Error Detection & Check Sums	Parity	
<text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text>	<text><list-item><list-item><list-item></list-item></list-item></list-item></text>	
Homework #2 — Due 9/14/98 (Part 2) 4. Give the 8-bit two's complement encoding of the following: -46_{10} 78_{10} 5. The UPC code for Ty Inc's Beanie Babie named "Bernie" begins 0 08421 04109. Show the computation of the check sum.		

Fall 1998, Lecture 04