
1 Fall 1998, Lecture 05

Basic Combinational Circuit

n A combinational circuit

● Maps a set of inputs to a set of outputs
n These inputs / outputs are called signals
n Each signal has the value 1 or 0

● Whenever the input values change, the
output values change after a short delay
(called the propagation delay)

● Is purely functional
n Output values depend only on inputs

n There is no concept of state in a
combinational circuit

a

b

d

x

y

inputs outputs

c

2 Fall 1998, Lecture 05

Truth Tables

n A truth table specifies what a logic circuit
does, but not how it does it

● It lists, for every possible combination of
input values, the output value(s)

n Our goal is to build the digital circuit that
implements this truth table

a b

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c

0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x

1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

3 Fall 1998, Lecture 05

Boolean Operations

n In Boolean algebra, variables assume
one of two logical values:

● True = 1

● False = 0

n Boolean algebra has three basic
operators:

● and, denoted as • (sometimes omitted)

● or, denoted as +

● not (or complement, or inversion),
denoted as ' or

n A gate is an electronic device that
implements a simple Boolean operation

● Gates are the basic building blocks of a
digital circuit

4 Fall 1998, Lecture 05

4 Basic Boolean Operations & Gates

and

a b a•b

0
0
1
1

0
1
0
1

0
0
0
1

a
b

a•b

(or ab)

or

a b a+b

0
0
1
1

0
1
0
1

0
1
1
1

a
b

a+b

not

a a

0
1

1
0

a a

(or a')

xor

a b a⊕ b

0
0
1
1

0
1
0
1

0
1
1
0

a
b

a⊕ b
= ab' + a'b

5 Fall 1998, Lecture 05

Generalized Gates

n These gates can also be generalized to
an arbitrary number of inputs

b c a•b•c

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
1

a
b a•b•c

a

0
0
0
0
1
1
1
1

c

a
b a+b+c

b c a+b+c

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
1
1
1
1
1

a

0
0
0
0
1
1
1
1

c

6 Fall 1998, Lecture 05

Building Combinational Circuits

n Consider the 4-input Boolean expression:

z = ((a'bc ⊕ c) + a + d)'

n The equivalent circuit (logic) diagram
would be:

Conventions in drawing logic diagrams:

● Inputs go on the left, outputs on the right

● Simplify inputs and outputs: don’t show
inverters

● Signal lines are drawn in rectangular
fashion (i.e., no diagonals, no curves)

● It’s OK for signal lines to cross; but if
signal lines merge / split, indicate the
junction with a black dot

a'
b
c c

a
d

7 Fall 1998, Lecture 05

Boolean Algebra

n The 10 fundamental properties are:

● commutative
x + y = y + x x • y = y • x

● associative
x + (y + z) = (x + y) + z
x • (y • z) = (x • y) • z

● distributive
x • (y + z) = (x • y) + (x • z)
x + (y • z) = (x + y) • (x + z)

● identity
x + 0 = x x • 1 = x

● complement
x + x' = 1 x • x' = 0

n Each property has a dual property,
created by:

● Exchanging + and •

● Exchanging 1 and 0
8 Fall 1998, Lecture 05

Boolean Algebra (cont.)

n These postulates can be used to prove a
number of useful theorems:

● idempotency
x + x = x
x • x = x

● null
x + 1 = 1
x • 0 = 0

● absorption
x + (x • y) = x
x • (x + y) = x

● De Morgan’s law
(x + y)' = x' • y'

(x • y)' = x' + y'

● other complement theorems
(x')' = x involution
1' = 0

0' = 1

9 Fall 1998, Lecture 05

2-Level Circuits

n Every Boolean expression can be written
as a sum of products, and as a
product of sums, and implemented as a
2-level circuit

z = ((a'bc ⊕ c) + a + d)' given

= (a'bcc' + (a'bc)'c + a + d)' defn of ⊕

= ((a'bc)'c + a + d)' complem.

= ((a+b'+c')c + a + d)' De Morg.

= (ac + b'c + a + d)' distributive

= (ac)'(b'c)'a'd' De Morg.

= (a'+c')(b+c')a'd' De Morg.

= (a'+a'c')(b+c')d' distributive

= (a'b + a'c' +a'bc' + a'c')d' distributive

= (a'b + a'c' + a'bc')d' x+x=x

= a'bd' + a'c'd' + a'bc'd' distributive

(this result is sum of products form)
10 Fall 1998, Lecture 05

Homework #1 — Due 9/14/98 (Part 3/3)

6. Draw the combinational circuit that
directly implements the Boolean
expression a = bc'd + (b' + d)(cd')

(This is the last question on Homework #1)

