Basic Combinational Circuit

- A combinational circuit
 - Maps a set of inputs to a set of outputs
 - These inputs / outputs are called signals
 - Each signal has the value 1 or 0

- Whenever the input values change, the output values change after a short delay (called the *propagation delay*)
- Is purely functional
 - Output values depend only on inputs

Fall 1998, Lecture 05

Fall 1998, Lecture 05

2

There is no concept of *state* in a combinational circuit

- A truth table specifies what a logic circuit does, but not how it does it
 - It lists, for every possible combination of input values, the output value(s)

а	b	с	d	х
0 0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 0 0 1	0 1 0 1 0 1 0	1 0 0 1 0 1 0
1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 0 0 1	0 1 0 1 0 1 0	0 0 0 0 0 0 0

 Our goal is to build the digital circuit that implements this truth table

4 Basic Boolean Operations & Gates

Fall 1998, Lecture 05

Boolean Operations

- In Boolean algebra, variables assume one of two logical values:
 - True = 1
 - False = 0
- Boolean algebra has three basic operators:
 - and, denoted as (sometimes omitted)
 - or, denoted as +
 - *not* (or *complement*, or *inversion*), denoted as ' or
- A gate is an electronic device that implements a simple Boolean operation
 - Gates are the basic building blocks of a digital circuit

Generalized Gates

These gates can also be generalized to an arbitrary number of inputs

Building Combinational Circuits

Consider the 4-input Boolean expression:

2-Level Circuits		Homework #1 — Due 9/14/98 (Part 3/3)
 <u>Every</u> Boolean expression car as <u>a sum of products</u>, and as <u>product of sums</u>, and implem 2-level circuit 	n be written a ented as a	 Draw the combinational circuit that directly implements the Boolean expression a = bc'd + (b' + d)(cd')
z = ((a'bc ⊕ c) + a + d)'	given	(This is the last question on Homework #1)
= (a'bcc' + (a'bc)'c + a + d)'	defn of ⊕	
= ((a'bc)'c + a + d)'	complem.	
= ((a+b'+c')c + a + d)'	De Morg.	
= (ac + b'c + a + d)'	distributive	
= (ac)'(b'c)'a'd'	De Morg.	
= (a'+c')(b+c')a'd'	De Morg.	
= (a'+a'c')(b+c')d'	distributive	
= (a'b + a'c' +a'bc' + a'c')d'	distributive	
= (a'b + a'c' + a'bc')d'	x+x=x	
= a'bd' + a'c'd' + a'bc'd'	distributive	
(this result is sum of products	form)	
9	Fall 1998, Lecture 05	10 Fall 1998, Lecture 05