
1 Fall 1998, Lecture 06

Constructing a Truth Table

n Given a circuit diagram, a truth table can
easily be constructed:

a b

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c

0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

a'bc

0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0

(a'bc)
⊕ c

0
0
1
1
0
0
0
0

0
0
1
1
0
0
1
1

((a'bc)
⊕ c)

+a +d

0
1
1
1
0
1
0
1

1
1
1
1
1
1
1
1

(((a'bc)
⊕ c)

+a +d)'

1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

a'
b
c c

a
d

2 Fall 1998, Lecture 06

Implementing a Truth Table

n For a given truth table, there may be
more than one valid implementation

a'
b
c c

a
d

a'
b
d'

a'
c'
d'

a'
b

d'
c'

a b

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c

0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x

1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

3 Fall 1998, Lecture 06

Implementing a Truth Table (cont.)

n Unfortunately, there also may be more
than one 2-level implementation:

z = a'bd' + a'c'd' + a'bc'd'

= a'bd' + (a'c'd') + (a'c'd')b

= a'bd' + a'c'd' a'
b
d'

a'
c'
d'

a'
b

d'
c'

a'
b
d'

a'
c'
d'

a b

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1

c

0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

d

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x

1
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0

4 Fall 1998, Lecture 06

3-Variable Karnaugh Maps

n Given a Boolean expression, we can
construct a Karnaugh map by drawing a
box as shown below and writing 1's in all
the appropriate boxes whenever that
term is true

z = a'bc + abc + ab

n Then we find the smallest set of ovals of
size 1, 2, 4, or 8, that cover all the 1s (but
none of the 0s), and write out the
minimized expression from those ovals

z = bc + ab

0 0 1 0

0 0 1 1a

b

c

0 0 1 0

0 0 1 1a

b

c

5 Fall 1998, Lecture 06

3- Variable Karnaugh Maps (cont.)

n The ovals should be as big as possible,
and two or more ovals can overlap

z = a + b

n Ovals can even wrap around the ends (or
top and bottom) of the table

z = c' + a'b'

n But ovals can't go diagonally

0 0 1 1

1 1 1 1a

b

c

1 1 0 1

1 0 0 1a

b

c

6 Fall 1998, Lecture 06

4-Variable Karnaugh Maps

n 4-variable Karnaugh maps are similar,
but now ovals can be of size 16 as well

n Now we can finally make sure that we
have the minimum 2-level and-or (SOP)
implementation of our example:

z = ((a'bc ⊕ c) + a + d)'

= a'bd' + a'c'd'

● Could also build Karnaugh map directly
from truth table, entering a “1” in each
box that corresponds to a combination of
inputs that produce an output of 1

1 0 0 0

1 0 0 1

a

d

0 0 0 0

0 0 0 0

b

c

a'
b
d'

a'
c'
d'

7 Fall 1998, Lecture 06

Negation / Universal Gate

n Nand and nor gates are very easy to
construct

n Any digital circuit can be implemented
using only nand or nor gates

a

b

(a' • b')'
= a + b

nand

a b a•b

0
0
1
1

0
1
0
1

1
1
1
0

a
b

a•b

nor

a b a+b

0
0
1
1

0
1
0
1

1
0
0
0

a
b

a+b

8 Fall 1998, Lecture 06

Example from Earlier in the Lecture

n In 2-level
and-or
form:

n In 2-level
nand form:

a'
b
d'

a'
c'
d'

a'
b

d'
c'

a'
b
d'

a'
c'
d'

a'
b

d'
c'

9 Fall 1998, Lecture 06

Homework #2 — Due 9/28/98 (Part 1)

1. Find the minimized expression that
corresponds to each of the following
Karnaugh maps:

2. Use a Karnaugh map to minimize the 4-
variable Boolean expression
z = a'b + b'c + abc + abcd

1 1 1 1

0 1 1 0a

b

c

1 0 0 1

0 1 1 0a

b

c

