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Adders, ALUs, etc.

n In a digital circuit, there is often a need to
perform arithmetic computations:
addition, subtraction, multiplication, etc.

n Depending on the available functional
units in the module library being used,
the designer may have one or more
alternatives:

● Dedicated functional units:
n adder
n subtractor

n multiplier

● Multi-function functional units:
n adder / subtractor

● More general functional units = Arithmetic
Logic Units (ALUs):
n ALU (addition, subtraction, multiplication)

n ALU (addition, subtraction, multiplication,
division, comparison)
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Half Adder

n Consider what happens when you add
two binary digits:

n We can construct a truth table for a half
adder (HA) — a device that adds two
binary digits a and b, producing a sum
and a carry out
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Implementing a Half Adder

n A half adder can be implemented directly
in 2-level SOP form:

n A half adder can also be implemented
using an xor gate:

n Which implementation is better? Why?
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Which Implementation of the Half
Adder is Better?

n Given this number of transistors and
amount of propagation delay (in ns)

2-input 3-input 4-input

and 6 2.4 8 2.8 10 3.2
or 6 2.4 8 2.8 10 3.2
xor   14 4.2
nand 4 1.4 8 1.8 10 2.2
nor 4 1.4 8 1.8 10. 2.2

inverter (1-input) 2 1.0

n In SOP form, using and and or gates:

● sum = ___ transistors,
cout = ___ transistors, total ___

● Max delay until outputs are ready = ___ns

n In SOP form, using nand gates:

n In xor form (using a single complex gate
instead of three simple gates):
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Full Adder

n A half adder is fine for the least
significant bit (LSB) of a multi-bit number,
but not the other bits

n A full adder (FA) adds two binary digits a
and b, plus a carry in (from the previous
digit), producing a sum and a carry out
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Full Adder (cont.)

n A full adder can be implemented directly
in 2-level SOP form:

n A full adder can also be implemented by
two half adders:

n Again, which implementation is better,
and why?  Various alternatives left as an
exercise for anyone interested…
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n-Bit Adder

n An n-bit adder can now be constructed
out of n-1 full adders, and 1 half adder

n This kind of n-bit adder is called a ripple
adder

● Why?

● What are its limitations?
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Half Subtractor

n Consider what happens when you
subtract two binary digits:

n Using the same techniques that we used
to construct a half adder, we can
construct a half subtractor — a device
that subtracts binary digit b from binary
digit a, producing a difference and a
borrow
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ALU

n Just as we can build an adder or a
subtractor, we could build an adder /
subtractor…

n …or a more general Arithmetic Logic Unit
(ALU) capable of performing a number of
arithmetic functions

n And we can generalize this idea to
construct an n-bit ALU capable of
performing whatever functions we want
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