
1 Fall 1998, Lecture 07

Adders, ALUs, etc.

n In a digital circuit, there is often a need to
perform arithmetic computations:
addition, subtraction, multiplication, etc.

n Depending on the available functional
units in the module library being used,
the designer may have one or more
alternatives:

● Dedicated functional units:
n adder
n subtractor

n multiplier

● Multi-function functional units:
n adder / subtractor

● More general functional units = Arithmetic
Logic Units (ALUs):
n ALU (addition, subtraction, multiplication)

n ALU (addition, subtraction, multiplication,
division, comparison)

2 Fall 1998, Lecture 07

Half Adder

n Consider what happens when you add
two binary digits:

n We can construct a truth table for a half
adder (HA) — a device that adds two
binary digits a and b, producing a sum
and a carry out

0
+0

0) 0

0
+1

0) 1

1
+0

0) 1

1
+1

1) 0

sumcarry
out

a b

0
1
0
1

sum

0
1
1
0

cout

0
0
0
1

0
0
1
1

3 Fall 1998, Lecture 07

Implementing a Half Adder

n A half adder can be implemented directly
in 2-level SOP form:

n A half adder can also be implemented
using an xor gate:

n Which implementation is better? Why?

a
b

sum

cout

0 1

1 0a

b

cout = absum = ab' + a'b

0 0

0 1a

b

4 Fall 1998, Lecture 07

Which Implementation of the Half
Adder is Better?

n Given this number of transistors and
amount of propagation delay (in ns)

2-input 3-input 4-input

and 6 2.4 8 2.8 10 3.2
or 6 2.4 8 2.8 10 3.2
xor 14 4.2
nand 4 1.4 8 1.8 10 2.2
nor 4 1.4 8 1.8 10. 2.2

inverter (1-input) 2 1.0

n In SOP form, using and and or gates:

● sum = ___ transistors,
cout = ___ transistors, total ___

● Max delay until outputs are ready = ___ns

n In SOP form, using nand gates:

n In xor form (using a single complex gate
instead of three simple gates):

5 Fall 1998, Lecture 07

Full Adder

n A half adder is fine for the least
significant bit (LSB) of a multi-bit number,
but not the other bits

n A full adder (FA) adds two binary digits a
and b, plus a carry in (from the previous
digit), producing a sum and a carry out

00
+01

0) 01

01
+01

0) 10

01
+11

1) 00

11
+11

1) 10

sumcarry
out

111

carry
in

a b

0
0
1
1
0
0
1
1

sum

0
1
1
0
1
0
0
1

cout

0
0
0
1
0
1
1
1

0
0
0
0
1
1
1
1

cin

0
1
0
1
0
1
0
1

6 Fall 1998, Lecture 07

Full Adder (cont.)

n A full adder can be implemented directly
in 2-level SOP form:

n A full adder can also be implemented by
two half adders:

n Again, which implementation is better,
and why? Various alternatives left as an
exercise for anyone interested…

0 0 1 0

0 1 1 1a

b

cin

cout = a•cin + b•cin + ab

0 1 0 1

1 0 1 0a

b

cin

sum = ab'cin' + a'b'cin
+ abcin + a'bcin'

cout

cin

a

b
HA

a

b

sum

cout

HA
a

b

sum

cout

sum

7 Fall 1998, Lecture 07

n-Bit Adder

n An n-bit adder can now be constructed
out of n-1 full adders, and 1 half adder

n This kind of n-bit adder is called a ripple
adder

● Why?

● What are its limitations?

FA
a

cin

sum

cout
b HA

a sum

coutb

a2 b2

FA
a

cin

sum

cout
b

a1 b1

sum2
(msb)

sum1

a0 b0

sum0
(lsb)

8 Fall 1998, Lecture 07

Half Subtractor

n Consider what happens when you
subtract two binary digits:

n Using the same techniques that we used
to construct a half adder, we can
construct a half subtractor — a device
that subtracts binary digit b from binary
digit a, producing a difference and a
borrow

0
–0

)

0
–1

)

1
–0

)

1
–1

)

differenceborrow

9 Fall 1998, Lecture 07

ALU

n Just as we can build an adder or a
subtractor, we could build an adder /
subtractor…

n …or a more general Arithmetic Logic Unit
(ALU) capable of performing a number of
arithmetic functions

n And we can generalize this idea to
construct an n-bit ALU capable of
performing whatever functions we want

sel f

a+b
a–b

0
1

a
b

sel

f
add/
sub

s1 s0

0
1
0
1

f

a+b
a–b
a•b
a&b

0
0
1
1

a
b
s1 s0

fALU

