Sequential Circuits

- For several lectures, we have studied combinational circuits - circuits whose output values depend only on the inputs

Now we will study sequential circuits circuits whose output values depend on both:

- the inputs, and
- the current state of the circuit
- The state of the circuit is defined by the values stored in the memory elements

With sequential circuits, we can build registers, memories, shift registers, counters, stacks, queues, etc.

With combinational circuits, we can build adders, ALUs, and glue logic

A Very Simple Computer Datapath

- temp $=\mathrm{a}+\mathrm{b}$ (a to left input...)

- $\mathrm{z}=$ temp $+\mathrm{c} \quad$ (temp to left input...)

Timing Diagrams

A timing diagram is a graphical representation of the signals in a circuit

- The horizontal axis represents time
- Vertical axis represents value of each signal:
- A 1 is represented as a high line
- A 0 is represented as a low line
- The timing diagram may account for propagation delay - the delay through a combinational element (the amount of time it takes to execute)
- Timing diagram illustrating the operation of a D latch:

CK \qquad \square \qquad \checkmark

Q \qquad \checkmark \qquad \square

The D Latch (Gated D Flip-Flop)

Inputs:

- D = data
- CK = clock

Outputs:

- Q

- Q'

Operation:

- When CK is $1, Q$ follows D (if D changes, Q changes also, after a short delay)
- Otherwise, Q keeps its last value

Note that the D latch keeps its value while CK is 0 (it's a sequential circuit)

- It's a memory!!

Clock

- It is common for a digital system to have a clock signal, which repeats a 0-1 pattern at regular intervals

- The period is the length of time that it takes to repeat the pattern
- The part of the pattern which has the value of 1 is called the clock pulse
- The 0-1 transition is called the rising (or positive) edge
- The 1-0 transition is called the falling (or trailing, or negative) edge

Clock signals are used in synchronous circuits - those where events happen at predictable, regular intervals

Can We Use a D Latch as a Register?

- Potential problem: output is unstable anytime CK is 1
- Can't use as register, since register is in a closed feedback loop - can't allow values to change while they're being used in a computation
- Want to change register values only when computation is complete
- Read values and compute (generating garbage output until finished)
- At end of cycle, when result is ready, store into register
- Must make cycle long enough to allow result to stabilize!

■ Useful for holding values to transfer outside the circuit

- OK here since we'll produce a result, and then tell outside when it's safe to read it

The (Edge-Triggered) D Flip-Flop

Inputs:

- $\mathrm{D}=$ data
- CK = clock

Outputs:

- Q

- Q'

Operation:

- When CK transitions from 0 to 1 (leading edge), Q is set to the value of D (after a short delay)
- Otherwise, Q keeps its last value, regardless of any changes in D
- We can use n D flip-flops to build an n-bit register...

D Latch vs. D Flip-Flop

- D Latch:
- When CK is $1, Q$ follows D (if D changes, Q changes also, after a short delay)

- D Flip-Flop:
- When CK transitions from 0 to 1 (leading edge), Q is set to the value of D (after a short delay)

- Useful as a memory element in a register

Building a D Flip-Flop

■ Implementation is fairly complicated to analyze...

Building a Register Out of D FFs

- This simplified diagram shows how a 4bit register can be constructed out of 4 D flip-flops

- When the load signal goes high, the data in values ($\mathrm{d} 3-\mathrm{d} 0$) are stored in the register, and become available as data out (03-00) signals

