Integrated Circuits (ICs)

- A modern digital system is built out of a collection of *integrated circuits* (ICs), each of which is made up of gates
- ICs are typically classified based on the number of gates they contain

 SSI (small scale integration) 4 nand gates 4 or gates 4 and gates 	< 10
 MSI (medium) 4-bit adder 8-input 1-bit multiplexer 	10-100
 LSI (large) Simple microprocessors interface devices PLAs 	100-10,000
	Fall 1998, Lecture 10
PLAs (cont.)	

This is an *abstract* diagram of a PLA with 6 inputs, 4 outputs, which can represent up to 12 product terms

Diagram from Digital Design, Johnson & Karim, PWS-Kent 1987

Try the Java KMap->PLA animation at http://tech-www.informatik.unihamburg.de/applets/kvd

PLAs

 A 2-level and-or structure is replicated many times in a programmable array called a PLA (programmable logic array)

Diagram from Computer Systems, Maccabe, Irwin 1993

 This PLA has 2 inputs, 2 outputs, and can represent up to 3 product terms

Fall 1998, Lecture 10

Integrated Circuits (ICs) (cont.)

Classification, cont.

2

- VLSI (very large...) >10,000
 - Modern microprocessors
 - 8086 = 29,000
 - i386DX = 275,000
 - i486DX = 1,200,000
 - Pentium = 3,100,000
 - Pentium MMX = 4,500,000
 - Pentium Pro = 5,500,000
 - Pentium II = 7,500,000
 - PA8000 = 3,900,000
 - (Data from "CPU & System Performance Info" at CPU Info Center http://infopad.eecs.berkeley.edu/cic)
 - Application-specific integrated circuits (ASICs):
 - Dedicated controllers (portable telephone, CD player, auto dashboard)
 - Digital signal processors (image processing, multimedia)
 - Field-programmable logic devices (FPLDs)

Field-Programmable Logic Device

- The next step beyond a PLA is the fieldprogrammable logic device (FPLD), also called:
 - Field-programmable gate array (FPGA)
 - Field-programmable logic array (FPLA)
 - Complex programmable logic device (CPLD)
- Essentially, a FPLD is an nxn array of PLA, with interconnection between them
 - Connections to 4 nearest neighbors
 - "Longer" connections across chip
 - May include D (or more complex) flipflops, to easily build sequential circuits
 - May include RAM

5

7

- Can be "field-programmed" repeatedly
- Available in different sizes up to 100,000 gates or so per device

Homework #2 — Due 9/28/98 (Part 3/3)

Can the Boolean expression

 (A' + B)(C + D') be implemented using a PLA? Explain your answer.

(This is the last question on Homework #2)

The VLSI Design Process

- Design tasks:
 - System synthesis converts a task specification into processors, memories, ASICs, etc.
 - Behavioral (high-level)synthesis converts an algorithmic description of behavior into registers, adders, ALUs, busses, multiplexors, etc.
 - Logic synthesis converts a structural description into gates and flip-flops
- Computer-aided design (CAD) tools for logic synthesis:
 - Schematic capture draw and interconnect structural elements
 - Synthesis produce gates, minimizing area, propagation delay, or power
 - Simulation and verification make sure the design does what you think it does

Fall 1998, Lecture 10

Fall 1998, Lecture 10

6