
1 Fall 1998, Lecture 13

CPU

n The Central Processing Unit (CPU) is the
part of the computer system responsible
for interpreting and executing programs

● It contains a datapath (ALU, registers,
interconnect) and a controller

● Examples: Intel 486, Intel Pentium

n For now, we will look at only one CPU
architecture: an accumulator machine

● Instruction
format:

● Instructions: (addr = address)
ADD addr — add value at addr to accum.

SUB addr — subtr. value at addr from acc.

MPY addr — mult. value at addr by acc.
DIV addr — divide value at addr by acc.

LOAD addr — load acc. with value at addr
STORE addr — store value in acc. at addr

0457

opcode address

2 Fall 1998, Lecture 13

The Accumulator Machine

n This is an accumulator machine — it
operates only on a value in memory and
the value in the accumulator

n The instruction format specifies how the
instruction is stored internally

● The whole instruction is 8 bits long

● 3 bits specify opcode — operation to
execute

● 5 bits specify the address; it can address
a memory of size 2^5 – 1 = 32 bytes

n Instruction set (2 classes of instructions):

● Arithmetic — operate on acc. and value in
memory, store result in accumulator

● Load/store — transfer values between
acc. and memory (use to fetch first
operand, use to store result in variable)

3 Fall 1998, Lecture 13

Datapath and Controller for the
Accumulator Machine

n The part in upper-right quadrant is the
controller; the rest is the data path

Diagram from Computer Systems, Maccabe, Irwin 1993

4 Fall 1998, Lecture 13

Understanding the Accumulator
Machine Datapath and Controller

n The components at the lower left should
be familiar:

● ALU — performs arithmetic and logical
(none here) operations
n Gets inputs from accumulator and memory

via bus

● Accumulator (register)
n Multiplexor selects input from ALU or bus

n The memory system (external to the
accumulator machine) connects to the
datapath via the bus

● The accumulator machine accesses the
memory through the two registers in the
lower right quadrant

● MAR — memory address register (used
to supply address to memory)

● MDR — memory data register (used to
pass data to/from memory)

5 Fall 1998, Lecture 13

Understanding the Accum. Machine
Datapath and Controller (cont.)

n The datapath components in the upper
left quadrant are new

● PC — program counter — stores the
address of the next instruction to execute

● INC — incrementer — can add 1 to the
value in the PC
n To generate address of next instruction

(no conditions, loops, or functions yet)

n The components in the upper right
quadrant are the datapath’s controller

● IR — instruction register — stores current
instruction being executed
n Same as “state register” in my controller

diagram from Lecture 09

● Decode — instruction decoder,
Timing and control
n These two are the same as the “control

logic” and “next state logic” in my
controller diagram

6 Fall 1998, Lecture 13

Instruction Execution Cycle for the
Accumulator Machine

Diagram from Computer Systems, Maccabe, Irwin 1993

7 Fall 1998, Lecture 13

I/O Devices

n The only component of the computer
system left are the I/O devices

n The I/O (input / output) devices are
accessed through registers in much the
same manner as the memory is
accessed

I/O busmemory busmemory CPU I/O
devices

CPU I/O Bus

data control status

printer controller

printer

8 Fall 1998, Lecture 13

Buses

n In our computer system, there are two
kinds of buses

● Inside the CPU, there is an internal bus

● Between the CPU, memory, and the I/O
devices, there is an external bus

n A data transfer on an external bus is
called a bus transaction

● Usually, one device is the master in such
a transaction, and the other(s) are the
slaves
n When sending data to print, the CPU is

the master, and the printer is the slave

n If there's a print error to report, the printer
is the master, and the CPU is the slave

n Briefly scan through the material in
Sections 3.4.1 and 3.4.2 of Maccabe, but
don't worry about the details

9 Fall 1998, Lecture 13

Homework #3 — Due 10/12/98 (Part 2)

2. For each of the following C statements,
(i) give a sequence of instructions from
Table 3.5 that will evaluate the
statement, and then (ii) translate your
code sequences into binary using the
encoding in Table 3.6 and Figure 3.11.
Assume that variables a, b, c, d, and e
correspond to memory locations 20, 21,
22, 23, and 24, respectively, and that
locations 25 and higher can be used for
storage of temporary results.

a. a = a + b – c

b. a = bc – ab

