
1 Fall 1998, Lecture 15

Program Translation

n Suppose we want to execute the
following statement in a high-level
programming language (e.g.,C):

● a = b + c;

n The C compiler is going to take that
statement, and translate it into assembly
language for a particular CPU
architecture:

LOAD 20 ; get b (stored at 20)
ADD 21 ; add c (stored at 21)
STORE 22 ; store in a (at 22)

n The assembler will translate those
assembly language statements into
machine language:

100 10100
000 10101
101 10110

2 Fall 1998, Lecture 15

1-Operand (Accumulator) Instruction
Format

n Instruction format:

n Uses an accumulator to store the
“current” value

● Can directly access only a single operand

● Arithmetic instructions
n use the accumulator as the first operand
n store the result in the accumulator

n Instructions: (addr = address)

ADD addr ACC = ACC + M[addr]

SUB addr ACC = ACC – M[addr]

MPY addr ACC = ACC • M[addr]

DIV addr ACC = ACC / M[addr]

LOAD addr ACC = M[addr]

STORE addr M[addr] = ACC

opcode address

3 Fall 1998, Lecture 15

2-Operand Instruction Format

n Instruction format:

n Instructions are in form: op dest, src

● Can directly access two operands

n Instructions: (src = source, dst =
destination, both refer to memory
addresses)

ADD dst, src M[dst] = M[dst] + M[src]

SUB dst, src M[dst] = M[dst] – M[src]

MPY dst, src M[dst] = M[dst] • M[src]

DIV dst, src M[dst] = M[dst] / M[src]

MOVE dst, src M[dst] = M[src]

opcode address address

4 Fall 1998, Lecture 15

0-Operand (Stack) Instruction Format

n Instruction format:

n Uses a stack to store operands

● Values are entered by reading them from
memory and pushing them onto the stack

● Arithmetic instructions operate on the
“top” 1 or 2 operands on the stack,
replacing those operands with the result

● Values are stored by popping the stack —
removing the value from the top of the
stack and storing it in memory

n Instructions: (TOS = top of stack)

PUSH addr TOS = M[addr]

POP addr M[addr] = TOS

ADD TOS = TOS-1 + TOS

SUB, MPY, DIV …

opcode

5 Fall 1998, Lecture 15

Instruction Formats

n Example: M[102] = M[100] – M[101]

n 1-Operand (Accumulator) Format

LOAD 100
SUB 101
STORE 102

n 2- Operand Format

MOVE 105, 100 MOVE 102, 100
SUB 105, 101 SUB 102, 101
MOVE 102, 105

n 0- Operand (Stack) Format

PUSH 100
PUSH 101
SUB
POP 102

6 Fall 1998, Lecture 15

3-Operand Instruction Format

n Instruction format:

n Instructions are in form:
op dst, src1, src2

● Can directly access three operands

n Instructions: (src1 = source 1, src2 =
source 2, dst = destination, all three refer
to memory addresses)

ADD dst, src1, src2 M[dst] =
M[src1] + M[src2]

SUB dst, src1, src2 M[dst] =
M[src1] – M[src2]

MPY dst, src1, src2 M[dst] =
M[src1] • M[src2]

DIV dst, src1, src2 M[dst] =
M[src1] / M[src2]

opcode address address address

7 Fall 1998, Lecture 15

Memory vs. Registers

n (Off-chip) main memory

● Very big

● Slow

n (On-chip) CPU registers

● Small number available

● Very fast

n For the 1-address, 2-address, and 3-
address operand formats that we’ve
shown, any of the addresses can
generally be replaced by a register

● 1 address: ADD R2

● 2 address: ADD R5, 100

● 3 address: ADD 101, R3, R4

n How can we take advantage of registers?

8 Fall 1998, Lecture 15

RISC LOAD/STORE Instruction Format

n LOAD and STORE instructions are the
only ones that can access memory:

LOAD Rdst, addr

STORE addr, Rsrc

n Other instructions must operate solely on
registers:

ADD Rdst, Rsrc1, Rsrc2

SUB Rdst, Rsrc1, Rsrc2

MPY Rdst, Rsrc1, Rsrc2

DIV Rdst, Rsrc1, Rsrc2

opcode reg address

opcode reg reg reg

9 Fall 1998, Lecture 15

The RISC / CISC Difference

n CISC — Complex Instruction Set
Computer (example: Intel Pentium)

● Many instructions and addressing modes,
may perform complicated operations

● Many different architectures

n RISC — Reduced Instruction Set
Computer (example: Sun SPARC, HP
PA-RISC, Motorola PowerPC)

● Few instructions and addressing modes,
perform simple, well-defined operations
n LOAD / STORE architecture

– Only LOAD and STORE instructions
access the main memory

– Other instructions operate solely on
registers

● Other characteristics of RISC machines
n Single-cycle execution of instructions

n High degree of pipelining
n Overlapping register windows

10 Fall 1998, Lecture 15

Worksheet

n Write assembly language code for the
following two statements, in the 1-, 2-,
and 0-operand instruction formats,
assuming that

variable a is stored at address 100,
b is at 101,
c is at 102,
d is at 103,

and addresses 105–109 can be used for
temporary storage of intermediate results.

● a = b + c*d

● a = b – (c/d)

11 Fall 1998, Lecture 15

Homework #3 — Due 10/12/98 (Part 3)

4. Write assembly language code for the
statement “a = (d+c) – a”, in the 0-, 1-,
and 2-operand instruction formats,
assuming:

variable a is stored at address 20,
b is at 21, c is at 22, d is at 23,
and addresses 25–29 can be used for
temporary storage of intermediate results.

Do not destroy the values in variables b,
c, or d.

(This is the last question on Homework #3)

