Immediate Values (Constants)

m So far, we have seen that instruction
operands can be either:

LOAD R1,23
ADD R1,R2,R4

o Addresses
e Registers

e (or some combination of the above, in
most formats except LOAD/STORE)

m We may also need constants

e Operands can also be immediate values
(constants) stored within the instruction

m Immediate values can be distinguished
from addresses by:

e Prefixing each immediate operand by a
special symbol (e.g., “#300” for the
constant 300)

¢ Using special versions of each instruction
(e.g., LOADI (load immediate) versus
LOAD) (not a common technique...)
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Immediate Values (Constants)
(cont.)

m A LOAD/STORE architecture supports:

¢ Arithmetic operations — third operand
can be either address or immediate value
m ADD R1,R2,R3
m ADD R1,R1,#1

m Instruction format has room for opcode,
dest register, srcl reg, and either
immediate value (large) or src2 reg (small)

e LOAD/STORE operations — non-register
operand must be address (not immediate)
m LOAD R1,300

m Instruction format has room for opcode,
dest register, and address

e MOV operation — third operand can be
either address or immediate value
m MOVE R2,R3 copy R3 into R2
m MOVE R2,#1 copy “1” into R2

m Instruction format has room for opcode,
dest register, and either immediate value
(large) or src2 reg (small)
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Operand Sizes

m Most memory systems allow the data to
be accessed in a variety of sizes

e Word (16 bit, 32 bit, etc.)
e Byte

e Half-word, double-word, etc.

m The data width can be specified by:

e Using special versions of each instruction
(e.g., ADDB (add byte) versus ADDW
(add word))

e Suffixing each instruction by a special
symbol (e.g., ADD.b (add byte) versus
ADD.w (add word))

m RISC machines typically

¢ Allow variable widths on LOAD and
STORE instructions

¢ Use full width for data manipulation
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Control Flow Constructs in C

m /f...then...else constructs:

if (a<max)
b=c;

else
b=c+1;

m forloops & while loops:

sum = 0;
for (i=1;i<=20 ;i++)
sum =sum +i;

m What if all C had was a very simple if

statement...

if ( condition) statement,

m ...and a statement that can “jump” to an
arbitrary line in the program?

goto label,
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Building an if...then...else Construct

if (a<max)
b=c;
else
b=c+1,

m Two ways it might be built:

if (a<max ) goto then;

goto else;
then: b=c;
goto end;
else: b=c+1,
end:
if (a>=max ) goto else;
then: b=c;
goto end;
else: b=c+1,
end:
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JUMP = “goto” in Assembly Language

m Most instruction sets include a JUMP (or
BRANCH) instruction, which
unconditionally jumps to the instruction at
the specified address

JUMP label

m The JUMP instruction works by storing
the specified address in the PC (Program
Counter)

m Some common conventions:

o A label must be the firstitem on a line,
and is followed by a colon (*:")

¢ A label refers to the next instruction
(which may or may not be on the same
line as the label)

e Itis acceptable to refer to a label in a
JUMP instruction before the label is
defined
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BRANCH =*if” in Assembly Language

m Most instruction sets include a
conditional BRANCH (or JUMP)
instruction, which conditionally jumps to
the instruction at the specified address

BRLT R1, R2, label ; PC = label

ifR1<R2
BRLE R1, R2, label ; ...if<=
BRGT R1, R2, label ;... if>
BRGE R1, R2, label ; ... if>=
BREQ R1, R2, label ;... if equal
BRNE R1, R2, label ; ... if not equal

m If the relationship between first two
operands is true, the instruction jumps to
the specified address (the 3rd operand)

o If true, the specified address is stored in
the PC (Program Counter)

e Otherwise, the PC is left untouched
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First (?) Description of Branching

Burks, Goldstine, and von Neuman, 1947

The utility of an automatic computer lies
in the possibility of using a given
sequence of instructions repeatedly, the
number of times it is iterated being
dependent on the results of the
computation. When the iteration is
completed a different sequence of
[instructions] is to be followed, so we
must, in most cases, give two parallel
trains of [instructions] preceded by an
instruction as to which routine is to be
followed. This choice can be made to
depend upon the sign of a number (zero
being reckoned as plus for machine
purposes). Consequently, we introduce
an [instruction] (the conditional transfer
[instruction]) which will, depending on the
sign of a given number, cause the proper
one of two routines to be executed.
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Building an if...then...else Construct

m The if...the...else in simplified C:

if (a<max ) goto then;

goto else;
then: b=c;

goto end;
else: b=c+1;

end:

m The if...the...else construct in assembly
language (LOAD / STORE format):

LOAD RO0,100 : hold ain RO
LOAD R1,101 ; hold max in R1
LOAD R2,102 ; hold b in R2
LOAD R3,103 ; hold c in R3
BRLT RO,R1,then ;if (a<max)...
JUMP else

then: MOVE R2,R3 b=c
JUMP end

else: ADD R2,R3#1 ;b=c+1

end: STORE 101,R2 ; store b (?)
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