
1 Fall 1998, Lecture 16

Immediate Values (Constants)

n So far, we have seen that instruction
operands can be either:

● Addresses LOAD R1,23

● Registers ADD R1,R2,R4

● (or some combination of the above, in
most formats except LOAD/STORE)

n We may also need constants

● Operands can also be immediate values
(constants) stored within the instruction

n Immediate values can be distinguished
from addresses by:

● Prefixing each immediate operand by a
special symbol (e.g., “#300” for the
constant 300)

● Using special versions of each instruction
(e.g., LOADI (load immediate) versus
LOAD) (not a common technique…)

2 Fall 1998, Lecture 16

Immediate Values (Constants)
(cont.)

n A LOAD/STORE architecture supports:

● Arithmetic operations — third operand
can be either address or immediate value
n ADD R1,R2,R3

n ADD R1,R1,#1

n Instruction format has room for opcode,
dest register, src1 reg, and either
immediate value (large) or src2 reg (small)

● LOAD/STORE operations — non-register
operand must be address (not immediate)
n LOAD R1,300

n Instruction format has room for opcode,
dest register, and address

● MOV operation — third operand can be
either address or immediate value
n MOVE R2,R3 copy R3 into R2

n MOVE R2,#1 copy “1” into R2
n Instruction format has room for opcode,

dest register, and either immediate value
(large) or src2 reg (small)

3 Fall 1998, Lecture 16

Operand Sizes

n Most memory systems allow the data to
be accessed in a variety of sizes

● Word (16 bit, 32 bit, etc.)

● Byte

● Half-word, double-word, etc.

n The data width can be specified by:

● Using special versions of each instruction
(e.g., ADDB (add byte) versus ADDW
(add word))

● Suffixing each instruction by a special
symbol (e.g., ADD.b (add byte) versus
ADD.w (add word))

n RISC machines typically

● Allow variable widths on LOAD and
STORE instructions

● Use full width for data manipulation

4 Fall 1998, Lecture 16

Control Flow Constructs in C

n if…then…else constructs:

if (a<max)
 b = c;
else
 b = c + 1;

n for loops & while loops:

sum = 0;
for (i=1 ; i<=20 ; i++)
 sum = sum + i;

n What if all C had was a very simple if
statement…

if (condition) statement;

n …and a statement that can “jump” to an
arbitrary line in the program?

goto label;

5 Fall 1998, Lecture 16

Building an if…then…else Construct

if (a<max)
 b = c;
else
 b = c + 1;

n Two ways it might be built:

if (a<max) goto then;
goto else;

then: b = c;
goto end;

else: b = c + 1;
end:

if (a>=max) goto else;
then: b = c;

goto end;
else: b = c + 1;
end:

6 Fall 1998, Lecture 16

JUMP = “goto” in Assembly Language

n Most instruction sets include a JUMP (or
BRANCH) instruction, which
unconditionally jumps to the instruction at
the specified address

JUMP label

n The JUMP instruction works by storing
the specified address in the PC (Program
Counter)

n Some common conventions:

● A label must be the first item on a line,
and is followed by a colon (“:”)

● A label refers to the next instruction
(which may or may not be on the same
line as the label)

● It is acceptable to refer to a label in a
JUMP instruction before the label is
defined

7 Fall 1998, Lecture 16

BRANCH = “if” in Assembly Language

n Most instruction sets include a
conditional BRANCH (or JUMP)
instruction, which conditionally jumps to
the instruction at the specified address

BRLT R1, R2, label ; PC = label
if R1 < R2

BRLE R1, R2, label ; … if <=

BRGT R1, R2, label ; … if >

BRGE R1, R2, label ; … if >=

BREQ R1, R2, label ; … if equal

BRNE R1, R2, label ; … if not equal

n If the relationship between first two
operands is true, the instruction jumps to
the specified address (the 3rd operand)

● If true, the specified address is stored in
the PC (Program Counter)

● Otherwise, the PC is left untouched
8 Fall 1998, Lecture 16

First (?) Description of Branching

Burks, Goldstine, and von Neuman, 1947

The utility of an automatic computer lies
in the possibility of using a given
sequence of instructions repeatedly, the
number of times it is iterated being
dependent on the results of the
computation. When the iteration is
completed a different sequence of
[instructions] is to be followed, so we
must, in most cases, give two parallel
trains of [instructions] preceded by an
instruction as to which routine is to be
followed. This choice can be made to
depend upon the sign of a number (zero
being reckoned as plus for machine
purposes). Consequently, we introduce
an [instruction] (the conditional transfer
[instruction]) which will, depending on the
sign of a given number, cause the proper
one of two routines to be executed.

9 Fall 1998, Lecture 16

Building an if…then…else Construct

n The if…the…else in simplified C:

if (a<max) goto then;
goto else;

then: b = c;
goto end;

else: b = c + 1;
end:

n The if…the…else construct in assembly
language (LOAD / STORE format):

LOAD R0,100 ; hold a in R0
LOAD R1,101 ; hold max in R1
LOAD R2,102 ; hold b in R2
LOAD R3,103 ; hold c in R3
BRLT R0,R1,then ; if (a<max)…
JUMP else

then: MOVE R2,R3 ; b = c
JUMP end

else: ADD R2,R3,#1 ; b = c + 1
end: STORE 101,R2 ; store b (?)

