Immediate Values (Constants)

m So far, we have seen that instruction
operands can be either:

LOAD R1,23
ADD R1,R2,R4

o Addresses
e Registers

e (or some combination of the above, in
most formats except LOAD/STORE)

m We may also need constants

e Operands can also be immediate values
(constants) stored within the instruction

m Immediate values can be distinguished
from addresses by:

e Prefixing each immediate operand by a
special symbol (e.g., “#300” for the
constant 300)

¢ Using special versions of each instruction
(e.g., LOADI (load immediate) versus
LOAD) (not a common technique...)

Fall 1998, Lecture 16

Immediate Values (Constants)
(cont.)

m A LOAD/STORE architecture supports:

¢ Arithmetic operations — third operand
can be either address or immediate value
m ADD R1,R2,R3
m ADD R1,R1,#1

m Instruction format has room for opcode,
dest register, srcl reg, and either
immediate value (large) or src2 reg (small)

e LOAD/STORE operations — non-register
operand must be address (not immediate)
m LOAD R1,300

m Instruction format has room for opcode,
dest register, and address

e MOV operation — third operand can be
either address or immediate value
m MOVE R2,R3 copy R3 into R2
m MOVE R2,#1 copy “1” into R2

m Instruction format has room for opcode,
dest register, and either immediate value
(large) or src2 reg (small)

Fall 1998, Lecture 16

Operand Sizes

m Most memory systems allow the data to
be accessed in a variety of sizes

e Word (16 bit, 32 bit, etc.)
e Byte

e Half-word, double-word, etc.

m The data width can be specified by:

e Using special versions of each instruction
(e.g., ADDB (add byte) versus ADDW
(add word))

e Suffixing each instruction by a special
symbol (e.g., ADD.b (add byte) versus
ADD.w (add word))

m RISC machines typically

¢ Allow variable widths on LOAD and
STORE instructions

¢ Use full width for data manipulation

3 Fall 1998, Lecture 16

Control Flow Constructs in C

m /f...then...else constructs:

if (a<max)
b=c;

else
b=c+1;

m forloops & while loops:

sum = 0;
for (i=1;i<=20 ;i++)
sum =sum +i;

m What if all C had was a very simple if

statement...

if (condition) statement,

m ...and a statement that can “jump” to an
arbitrary line in the program?

goto label,

4 Fall 1998, Lecture 16

Building an if...then...else Construct

if (a<max)
b=c;
else
b=c+1,

m Two ways it might be built:

if (a<max) goto then;

goto else;
then: b=c;
goto end;
else: b=c+1,
end:
if (a>=max) goto else;
then: b=c;
goto end;
else: b=c+1,
end:

Fall 1998, Lecture 16

JUMP = “goto” in Assembly Language

m Most instruction sets include a JUMP (or
BRANCH) instruction, which
unconditionally jumps to the instruction at
the specified address

JUMP label

m The JUMP instruction works by storing
the specified address in the PC (Program
Counter)

m Some common conventions:

o A label must be the firstitem on a line,
and is followed by a colon (*:")

¢ A label refers to the next instruction
(which may or may not be on the same
line as the label)

e Itis acceptable to refer to a label in a
JUMP instruction before the label is
defined

Fall 1998, Lecture 16

BRANCH =*if” in Assembly Language

m Most instruction sets include a
conditional BRANCH (or JUMP)
instruction, which conditionally jumps to
the instruction at the specified address

BRLT R1, R2, label ; PC = label

ifR1<R2
BRLE R1, R2, label ; ...if<=
BRGT R1, R2, label ;... if>
BRGE R1, R2, label ; ... if>=
BREQ R1, R2, label ;... if equal
BRNE R1, R2, label ; ... if not equal

m If the relationship between first two
operands is true, the instruction jumps to
the specified address (the 3rd operand)

o If true, the specified address is stored in
the PC (Program Counter)

e Otherwise, the PC is left untouched

Fall 1998, Lecture 16

First (?) Description of Branching

Burks, Goldstine, and von Neuman, 1947

The utility of an automatic computer lies
in the possibility of using a given
sequence of instructions repeatedly, the
number of times it is iterated being
dependent on the results of the
computation. When the iteration is
completed a different sequence of
[instructions] is to be followed, so we
must, in most cases, give two parallel
trains of [instructions] preceded by an
instruction as to which routine is to be
followed. This choice can be made to
depend upon the sign of a number (zero
being reckoned as plus for machine
purposes). Consequently, we introduce
an [instruction] (the conditional transfer
[instruction]) which will, depending on the
sign of a given number, cause the proper
one of two routines to be executed.

Fall 1998, Lecture 16

Building an if...then...else Construct

m The if...the...else in simplified C:

if (a<max) goto then;

goto else;
then: b=c;

goto end;
else: b=c+1;

end:

m The if...the...else construct in assembly
language (LOAD / STORE format):

LOAD RO0,100 : hold ain RO
LOAD R1,101 ; hold max in R1
LOAD R2,102 ; hold b in R2
LOAD R3,103 ; hold c in R3
BRLT RO,R1,then ;if (a<max)...
JUMP else

then: MOVE R2,R3 b=c
JUMP end

else: ADD R2,R3#1 ;b=c+1

end: STORE 101,R2 ; store b (?)

Fall 1998, Lecture 16

