
1 Fall 1998, Lecture 17

Building a for Loop

sum = 0;
for (i=1 ; i<=20 ; i++)
 sum = sum + i;

n Two ways it might be built:

sum = 0;
i=1;

test: if (i <= 20) goto for;
goto end;

for: sum = sum + i;
i++;
goto test;

end:

sum = 0;
i=1;

for: if (i > 20) goto end;
sum = sum + i;
i++;
goto for;

end:

2 Fall 1998, Lecture 17

Building a for Loop

n The for loop in simplified C:

sum = 0;
i=1;

test: if (i <= 20) goto for;
goto end;

for: sum = sum + i;
i++;
goto test;

end:

n The for loop in assembly language
(LOAD / STORE format):

LOAD R0,#0 ; hold sum in R0
LOAD R1,#1 ; hold i in R1

test: BRLE R1,#20,for ; if (i<=20)…
JUMP end

for: ADD R0,R0,R1 ; sum = sum + i
ADD R1,R1,#1 ; i++
JUMP test

end: STORE 100,R0 ; store sum (?)

3 Fall 1998, Lecture 17

Variations on the BRANCH Instruction

n BRANCH with implicit second operand of
zero (i.e., comparison to zero):

BRLTZ R1, label ; PC = label if R1 < 0

BRLEZ R1, label ; … if R1 <= 0

…

n If the arithmetic instructions store
information about their result somewhere
(e.g., whether it’s zero or negative), the
the BRANCH can use that information as
an implicit operand:

BRZ label ; PC = label if Z

BRN label ; PC = label if N

BRO label ; PC = label if O

…

● A condition code register keeps track of
the N (negative), Z (zero), O (overflow),
etc. bits

4 Fall 1998, Lecture 17

Variations on the BRANCH Instruction
(cont.)

n The familiar branch instructions can also
take advantage of the condition codes:

BRLT label ; PC = label if N

BRLE label ; PC = label if N or Z

BREQ label ; PC = label if Z

…

● Think about the above instructions when
preceded by “SUB R1,R3,R6”
n This is confusing, but when thinking about

SUB the instructions above make sense

n Thinking about ADD (or other arithmetic
instructions) doesn’t work with the above
instructions, but does work with the more
general branches on the previous slide

● If you don’t want to actually subtract, use
the “compare” instruction to simply
compare two operands: “CMP R3, R6”

n Read Section 4.5 in detail (except 4.5.7)

5 Fall 1998, Lecture 17

Worksheet

n A particular keyboard communicates with
the CPU as follows:

● A status register is addressed by the CPU
at memory location 200. Bit 7 (little
endian addressing) is used to indicate
that a character is available. If so, that bit
is 1; otherwise, it is 0. Other bits serve
other purposes.

● A data register, addressed by the CPU at
memory location 201, stores the
character typed on the keyboard.

Write an assembly language code
sequence that loops forever. Inside that
loop, the CPU should check the status
register until a character is available, and
when one is available, store it into
register R9. Use the book’s LOAD /
STORE instruction format, and condition
codes for conditional branches.

6 Fall 1998, Lecture 17

Bit Manipulation

n Bitwise operations:

AND Rdest, Rsrc1, Rsrc2
 ; Rdest = Rsrc1 & Rsrc2

OR Rdest, Rsrc1, Rsrc2

XOR Rdest, Rsrc1, Rsrc2

● These operations perform a bitwise and,
or, or xor on their two source operands

n Used with a mask to selectively
manipulate bits:

1010 1100 & 1111 0000 --> 1010 0000

1010 1100 | 1111 0000 --> 1111 1100

1010 1100 ^ 1111 0000 --> 0101 1100

7 Fall 1998, Lecture 17

Bit Manipulation (cont.)

n Direct bit access operations:

BB Rsrc, n, label
; PC = label if nth bit of Rsrc is 1

BSET Rdest, n, m
; sets the nth through mth bit
; of Rdest to 1

BCLR Rdest, n, m
; sets the nth through mth bit
; of Rdest to 0

n Shift and rotate (left) operations:

SLZ Rdest, Rsrc, n
; Rdest = Rsrc shifted left n bits,
; filling vacated bits with 0s

SLO Rdest, Rsrc, n
; Rdest = Rsrc shifted left n bits,
; filling vacated bits with 1s

ROTL Rdest, Rsrc, n
; Rdest = Rsrc rotated left n bits

8 Fall 1998, Lecture 17

Homework #4 — Due 10/26/98 (Part 1)

1. Translate into assembly language, using
the book’s LOAD / STORE instruction
format. Assume that sum, sqsum, i, and
n correspond to registers R1–R4, in that
order. Store the new values of sum and
sqsum back into memory locations 100
and 101, respectively.

sum = 0;
sqsum = 0;
for (i=1; i<=n; i++)

sum = sum + i;
sqsum = sqsum + i * i;

