Program Translation (Review)

m Suppose we want to execute the
following statement in a high-level
programming language (e.g.,C):

e a=b+c;

m The C compiler is going to take that
statement, and translate it into assembly
language for a particular CPU
architecture:

LOAD 20 ; get b (stored at 20)
ADD 21 ; add c (stored at 21)
STORE 22 ; store in a (at 22)

m The assembler will translate those
assembly language statements into
machine language:

100 10100
000 10101
101 10110

Fall 1998, Lecture 18

Programming in Assembly Language

m Common programming conventions:

¢ One instruction per line, each containing:
m Opcode
m Comma-separated list of operands

e A semicolon (“;”) denotes a comment,
which lasts until the end of that line

¢ Alabel is defined by an identifier followed
by a colon (*:") at the beginning of a line

¢ Aline may be empty, contain a label
definition, contain an instruction, or
contain a label followed by an instruction

e Spacing can be done with spaces or tabs
e Good style: labels, opcodes, operands,
and comments should line up in columns

m Assembly language programs also
contain assembler directives —
instructions to the assembler

Fall 1998, Lecture 18

Equates

m Most assemblers allow the programmer
to define symbolic constants

.equate MAX,100

e < name, value > added to symbol table

m After discussing equates, your book
shows how they can be used to keep
track of locations:

.equate loc_x, 100
STORE loc_x,R1

m This technigue would make the programs
we’ve seen up until now more readable

e But —is this a good idea? What are the
problems with this?

Fall 1998, Lecture 18

Reserving Space for Variables

m Most assemblers allow the programmer
to reserve named memory locations for
the purpose of storing variables

a: .reserve 4 ; reserve 4 bytes
b: reserve 4 ;reserve 4 bytes
LOAD R1,a
LOAD R2,b

e The assembler keeps track of the actual
addresses, while the programmer simply
refers to each by name

m There may also be a mechanism for
reserving variables with initial values

counter: .word 100
init_temp: .word 40

m Read Section 5.1.3 in detall

Fall 1998, Lecture 18

Worksheet

m What is wrong with the following code
segment? (There may be more than one
type of error.)

start:

y. .reserve 4 ; Y needs 4 bytes
LOAD R2)y ;storeyinR2 (temp)

z:. .reserve 4 ; Z needs 4 bytes
LOAD R3,z ;store zin R3 (2)
CLEAR R4 ; Clear R4 (x)
JUMP test ; goto test

top: ADD R4, R4#1 ;x=x+1

test: SUB R2,R2,R3 ; temp = temp—x
BRGE top ; if (temp>=0) goto...

X: .reserve 4 ; X needs 4 bytes
STORE x,R4 ; store the result

Fall 1998, Lecture 18

Assembler Segments

m A assembler program is typically
organized into three segments:

e Text segment — holds instructions

e Data segment — holds initialized data
(data reserved using .word, .byte, etc.)

e Bss segment — holds uninitialized data
(data reserved using .reserve)

m Text and data segments are present in
object file, but only bss header is there

¢ All segments are present when file is
loaded into memory

m It is usually up to the programmer (!) to
identify these segments, and to put the
appropriate items in the proper segment

text
.data
.bss

Fall 1998, Lecture 18

Translating an Assembly Language
Program

m The assembler performs initial translation
of an assembly language module into
machine language

e The source module is translated into an
object module

m The linker links a set of assembled
modules and libraries together to form a
complete program (an executable file)

o Resolves external references — symbols
defined in one module and used in
another

m The Joader loads the completed program
into memory where it can be executed

e Must usually be capable of loading the
program at an arbitrary location in
memory (relocation)

m Must adjust all addresses in the program

Fall 1998, Lecture 18

Building the Symbol Table

m As the assembler translates a program, it
maintains a symbol table

e < label, address >

e When a label is defined, that label, along
with the current value of the location
counter, is stored in the symbol table

e When a label is used, the assembler
looks in the symbol table to find the
corresponding address

m Location counter — keeps track of
address of current instruction during
assembly process

e The location counter is not the Program
Counter

m Location counter is a variable used when
the program is translated

m Program Counter is a register used when
the program is executed

Fall 1998, Lecture 18

