
1 Fall 1998, Lecture 18

Program Translation (Review)

n Suppose we want to execute the
following statement in a high-level
programming language (e.g.,C):

● a = b + c;

n The C compiler is going to take that
statement, and translate it into assembly
language for a particular CPU
architecture:

LOAD 20 ; get b (stored at 20)
ADD 21 ; add c (stored at 21)
STORE 22 ; store in a (at 22)

n The assembler will translate those
assembly language statements into
machine language:

100 10100
000 10101
101 10110

2 Fall 1998, Lecture 18

Programming in Assembly Language

n Common programming conventions:

● One instruction per line, each containing:
n Opcode

n Comma-separated list of operands

● A semicolon (“;”) denotes a comment,
which lasts until the end of that line

● A label is defined by an identifier followed
by a colon (“:”) at the beginning of a line

● A line may be empty, contain a label
definition, contain an instruction, or
contain a label followed by an instruction

● Spacing can be done with spaces or tabs

● Good style: labels, opcodes, operands,
and comments should line up in columns

n Assembly language programs also
contain assembler directives —
instructions to the assembler

3 Fall 1998, Lecture 18

Equates

n Most assemblers allow the programmer
to define symbolic constants

.equate MAX,100

● < name, value > added to symbol table

n After discussing equates, your book
shows how they can be used to keep
track of locations:

.equate loc_x, 100

STORE loc_x,R1

n This technique would make the programs
we’ve seen up until now more readable

● But — is this a good idea? What are the
problems with this?

4 Fall 1998, Lecture 18

Reserving Space for Variables

n Most assemblers allow the programmer
to reserve named memory locations for
the purpose of storing variables

a: .reserve 4 ; reserve 4 bytes
b: .reserve 4 ; reserve 4 bytes

LOAD R1,a
LOAD R2,b

● The assembler keeps track of the actual
addresses, while the programmer simply
refers to each by name

n There may also be a mechanism for
reserving variables with initial values

counter: .word 100
init_temp: .word 40

n Read Section 5.1.3 in detail

5 Fall 1998, Lecture 18

Worksheet

nWhat is wrong with the following code
segment? (There may be more than one
type of error.)

start:
y: .reserve 4 ; y needs 4 bytes

LOAD R2,y ; store y in R2 (temp)
z: .reserve 4 ; z needs 4 bytes

LOAD R3,z ; store z in R3 (z)
CLEAR R4 ; clear R4 (x)
JUMP test ; goto test

top: ADD R4,R4,#1 ; x = x + 1
test: SUB R2,R2,R3 ; temp = temp–x

BRGE top ; if (temp>=0) goto…
x: .reserve 4 ; x needs 4 bytes

STORE x,R4 ; store the result

6 Fall 1998, Lecture 18

Assembler Segments

n A assembler program is typically
organized into three segments:

● Text segment — holds instructions

● Data segment — holds initialized data
(data reserved using .word, .byte, etc.)

● Bss segment — holds uninitialized data
(data reserved using .reserve)

n Text and data segments are present in
object file, but only bss header is there

● All segments are present when file is
loaded into memory

n It is usually up to the programmer (!) to
identify these segments, and to put the
appropriate items in the proper segment

.text

.data

.bss

7 Fall 1998, Lecture 18

Translating an Assembly Language
Program

n The assembler performs initial translation
of an assembly language module into
machine language

● The source module is translated into an
object module

n The linker links a set of assembled
modules and libraries together to form a
complete program (an executable file)

● Resolves external references — symbols
defined in one module and used in
another

n The loader loads the completed program
into memory where it can be executed

● Must usually be capable of loading the
program at an arbitrary location in
memory (relocation)
n Must adjust all addresses in the program

8 Fall 1998, Lecture 18

Building the Symbol Table

n As the assembler translates a program, it
maintains a symbol table

● < label, address >

● When a label is defined, that label, along
with the current value of the location
counter, is stored in the symbol table

● When a label is used, the assembler
looks in the symbol table to find the
corresponding address

n Location counter — keeps track of
address of current instruction during
assembly process

● The location counter is not the Program
Counter
n Location counter is a variable used when

the program is translated

n Program Counter is a register used when
the program is executed

