
1 Fall 1998, Lecture 19

Translating an Assembly Language
Program (Review)

n The assembler performs initial translation
of an assembly language module into
machine language

● A module is a file that contains all or part
of a program

● The source module is translated into an
object module

n The linker links a set of assembled
modules and libraries together to form a
complete program (an executable file)

● Resolves external references — symbols
defined in one module and used in
another

n The loader loads the completed program
into memory where it can be executed

● Usually capable of loading the program at
an arbitrary memory location (relocation)

2 Fall 1998, Lecture 19

A Simple One-Pass Assembler

void main (void)
{

/* construct an empty symbol table */
make_empty_table (sym_tab);

/* initialize the location counter */
location = LOAD_ADDR;

/* process each line in the source file */
while (!eof(source_file)) {

read_line (sourcefile, this_line);

/* check for a new label definition */
label = new_label (this_line);
if (label != NULL)

enter (sym_tab, label, location);

/* translate the instruction on this line */
mach_inst = translate (this_line, location);
if (mach_inst != NULL) {

write (object_file, mach_inst);
location = location + size_of(mach_inst);

}
}

}

3 Fall 1998, Lecture 19

Working with Pointers
(Preview)

The C code:
ptra = &a[0];
ptrb = &b[0];
for (i=1 ; i<=10 ; i++) /* use register */
{ /* indirect */

*ptrb = *ptra; /* addressing */
ptra++; ptrb++

 }

The assembler code:
LOAD R2,#a ; R2 = ptra
LOAD R3,#b ; R3 = ptrb

LOAD R1,#1 ; R1 = i
test2: BRLE R1,#10,for2

JUMP endfor2
for2: STORE @R3,@R2

ADD R2,R2,#4
ADD R3,R3,#4
ADD R1,R1,#1
JUMP test2

endfor2:
4 Fall 1998, Lecture 19

A Two-Pass Assembler

void main (void)
{

/*********** the first pass ***********/
make_empty_table (sym_tab);
location = LOAD_ADDR;
while (!eof(source_file)) {

this_line = read_line (source_file);
label = new_label (this_line);
if (label != NULL)

enter (sym_tab, label, location);
location = location + bytes_needed(this_line);

}

/*********** the second pass ***********/
rewind_file (source_file);
location = LOAD_ADDR;
while (!eof(source_file)) {

this_line = read_line (sourcefile);
mach_inst = translate (this_line, location);
if (mach_inst != NULL) {

write (object_file, mach_inst);
location = location + size_of(mach_inst);

}
}

}

5 Fall 1998, Lecture 19

A Two-Pass Assembler
With a Patch List

void main (void)
{

/*********** the first pass ***********/
make_empty_table (sym_tab);
location = LOAD_ADDR;
while (!eof(source_file)) {

this_line = read_line (source_file);
label = new_label (this_line);
if (label != NULL)

enter (sym_tab, label, location);
mach_inst = translate (this_line, location);
if (mach_inst != NULL) {

if (incomplete (mach_inst)) {
patch_item = make_patch

(mach_inst, location);
add_to_end (patch_list, patch_item);

}
write (object_file, mach_inst);
location = location + size_of(mach_inst);

}
}
/*********** the second pass ***********/
while (!is_empty(patch_list)) {

patch_item = remove_first (patch_list);
apply_patch (object_file, patch_item);

}
} 6 Fall 1998, Lecture 19

Notes on Two-Pass Assembler
With Patch List

n In the first pass, the assembler

● Translates each instruction into machine
language and puts it into the object file,
even if it has to leave “holes” where it
should put an address

● Enters labels into symbol table, with an
indication if they’re undefined

● Builds a patch list
n Instructions that need to be patched

n After it finishes that pass, then it knows
all the labels and addresses (the symbol
table is complete), so…

n In the second pass, the assembler goes
over (only) the object file

● “patching” the “holes” in the instructions
that use forward references with the
actual addresses

7 Fall 1998, Lecture 19

Assembler With Segments

n Maintains separate base address and
location counter for each segment

n Initially writes translated text and data to
separate object files

● Does not write .bss segment to object file
(no need to store uninitialized space!)

n Then writes final object file:

● Header (size of each segment, address of
first instruction to be executed, etc.)

● Text segment, data segment

● Symbol table, patch list(s)

n Two alternatives to determining length of
text and data segments:

● Three-pass assembler

● Use offsets instead of addresses in
symbol table

8 Fall 1998, Lecture 19

Linking

n The linker links a set of assembled
modules and libraries together to form a
complete program (an executable file)

● Resolves external references — symbols
defined in one module and used in another

n Assembler and linker can work together:

● Assembler makes a single pass:
n Translates each instruction (w/ holes)

n Builds symbol table (incl. undefined labels)

n Builds two patch lists (text, data)

n All symbol references cause a patch entry

● Linker makes three passes
n Pass 1 — Combine text, data, and bss

segments into a single executable file

n Pass 2 — Build private symbol table for
unexported symbols in each file, public
symbol table for exported symbols

n Pass 3 — Apply all patches to executable
file

9 Fall 1998, Lecture 19

Loading

n The loader loads the completed program
into memory where it can be executed

● Loads text and data segments into
memory at specified location

● Returns value of start address to
operating system (from header —
address of first instruction to be executed)

n Alternatives in loading

● Absolute loader — loads executable file
at fixed location

● Relocatable loader — capable of loading
the program at an arbitrary memory
location
n Assembler and linker assume program will

start at location 0

n When program is loader, loader modifies
all addresses by adding the real start
location to those addresses

10 Fall 1998, Lecture 19

Homework #4 — Due 10/26/98 (Part 2)

2. Write a complete assembly language
program in the book’s LOAD / STORE
architecture that reserves space for 5
integers, counts the number of those
integers that are odd (we’ll assume that
someone else somehow loads values
into those memory locations), and stores
the result in a memory space named
“count”. Your program should also:

● Use a loop to examine the 5 integers

● Use bit minipulation instructions to
determine if each integer is odd or even

● Contain all necessary segments (text,
data, bss, etc.)

● Be written in good programming style,
including comments, etc.

This program counts 3/5 of this
homework grade.

