
1 Fall 1998, Lecture 20

Addressing Modes

n We have seen that instructions can, in
general, refer to:

● Immediate operands MOVE R1,#1

● Operands in registers ADD R2,R3,R4

● Operands in memory LOAD R3,100

n We can illustrate the three corresponding
addressing modes as follows:

operandimmediate

in the instruction in a register in memory

register #register operand

addressdirect
(absolute) operand

2 Fall 1998, Lecture 20

Indirect and Register Indirect
Addressing

n If you have an address stored in
memory, you can access the memory
location pointed to by that address using
indirect addressing as shown above

LOAD R1,@100

n Register indirect addressing, shown
above, is generally more efficient

LOAD R1,@R2

address

indirect

address

operand

in the instruction in a register in memory

in the instruction in a register in memory

register #register
indirect address operand

3 Fall 1998, Lecture 20

Implementing Pointers Using
Register Indirect Addressing

n For example, consider the C code:

int x; /* define a variable x */
int *px; /* define a pointer (to x)*/
px = &x; /* set px to point to x */
px = 1; / store 1 in x via pointer */

n The assembly language translation,
using register indirect addressing and a
LOAD / STORE architecture, might be:

x .reserve 4
MOVE R2,#x ; R2 = px = &x
MOVE R3,#1
STORE @R2,R3 ; *px = 1

in the instruction in a register in memory

register #register
indirect address operand

4 Fall 1998, Lecture 20

Handling Arrays in Assembler
(First Attempt)

n Consider the C code:

int a[100]; /* define an array*/
int i=40; /* define an index */
a[i] = 50; /* access the array*/

n In assembler, the variables could be
defined in a .bss segment as follows,
assuming an int takes 4 bytes:

a: .reserve 100*4 ; int a[100]
i: .word 40 ; int i = 40

n Then a[i] could be accessed as follows:

LOAD R3,i ; scale array index
MULT R3,R3,#4 ; (mult by 4)
MOVE R4,#a ; base of array
ADD R3,R3,R4 ; address of a[i]
MOVE R2,#50
STORE @R3,R2 ; a[i]=50

5 Fall 1998, Lecture 20

Handling Arrays in Assembler
Using Indexed Addressing

n In indexed addressing, the instruction
specifies a base address, and an index
register specifies a displacement

● Both are added together (by CPU) to
produce the effective address

LOAD R1,myarray[R2]

n Array access using indexed addressing

LOAD R3,i ; assumes an int
MULT R3,R3,#4 ; is 4 bytes wide
MOVE R2,#50
STORE a[R3],R2 ; a[i]=50

n Read Section 5.2, skipping 5.2.3 — 5.2.6

in the instruction in a register in memory

register #

indexed

displacement

operandaddress

index register

+

6 Fall 1998, Lecture 20

Example — Working with Pointers

The C code:
int a[10], b[10]; /* store in memory */
int *ptra, *ptrb; /* store in registers */

for (i=0 ; i<10 ; i++) /* use indexed */
a[i] = i; /* addressing */

The assembler code:
.bss

a: .reserve 10*4
b: .reserve 10*4

.text
MOVE R1,#0

test1: BRLT R1,#10,for1
JUMP endfor1

for1: MPY R2,R1,#4
STORE a[R2],R1
ADD R1,R1,#1
JUMP test1

endfor1:

7 Fall 1998, Lecture 20

Example — Working with Pointers
(cont.)

The C code:
ptra = &a[0];
ptrb = &b[0];
for (i=1 ; i<=10 ; i++) /* use register */
{ /* indirect */

*ptrb = *ptra; /* addressing */
ptra++; ptrb++

 }

The assembler code:
MOVE R2,#a ; R2 = ptra
MOVE R3,#b ; R3 = ptrb

MOVE R1,#1 ; R1 = i
test2: BRLE R1,#10,for2

JUMP endfor2
for2: STORE @R3,@R2

ADD R2,R2,#4
ADD R3,R3,#4
ADD R1,R1,#1
JUMP test2

endfor2:
8 Fall 1998, Lecture 20

Common Addressing Modes

operandimmediate

in the instruction in a register in memory

register #register operand

addressdirect
(absolute) operand

address

indirect

address

operand

register #register
indirect address operand

register #

indexed

displacement

operandaddress

index register

+

9 Fall 1998, Lecture 20

Homework #4 — Due 10/26/98 (Part 3)

3. Consider the following sequence of
instructions. For each instruction, tell me
what it does (i.e., loads R3 with the value
100, loads R3 from memory location 100,
etc.).

.equate start 200

.equate x 24

LOAD R1,#x
LOAD R2,x
LOAD R3,x*4
LOAD R4,start[R1]
LOAD R5,@R1

(This is the last question on Homework #4)

